首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ionic liquids in separation techniques   总被引:5,自引:0,他引:5  
The growing interest in ionic liquids (ILs) has resulted in an exponentially increasing production of analytical applications. The potential of ILs in chemistry is related to their unique properties as non-molecular solvents: a negligible vapor pressure associated to a high thermal stability. ILs found uses in different sub-disciplines of analytical chemistry. After drawing a rapid picture of the physicochemical properties of selected ILs, this review focuses on their use in separation techniques: gas chromatography (GC), liquid chromatography (LC) and electrophoretic methods (CE). In LC and CE, ILs are not used as pure solvents, but rather diluted in aqueous solutions. In this situation ILs are just salts. They are dual in nature. Too often the properties of the cations are taken as the properties of the IL itself. The lyotropic theory is recalled and the effects of a chaotropic anion are pointed out. Many results can be explained considering all ions present in the solution. Ion-pairing and ion-exchange mechanisms are always present, associated with hydrophobic interactions, when dealing with IL in diluted solutions. Chromatographic and electrophoretic methods are also mainly employed for the control and monitoring of ILs. These methods are also considered. ILs will soon be produced on an industrial scale and it will be necessary to develop reliable analytical procedures for their analysis and control.  相似文献   

2.
离子液体在分析化学中应用研究进展   总被引:4,自引:0,他引:4  
孙伟  高瑞芳  焦奎 《分析化学》2007,35(12):1813-1819
离子液体具有低蒸汽压、低熔点、宽电化学窗口、良好离子导电性、导热性及高热稳定性等特点,是一种新型的软介质和功能材料。离子液体已经被用于分析化学的各个领域如分离科学、色谱体系、电化学分析与传感器、光谱与质谱等方面。并对室温离子液体在分析化学各个方面的最新应用进展进行了综述。  相似文献   

3.
Ionic liquids (ILs) are considered advanced solvents with interesting properties that have led to remarkable improvements in the performance of analytical methods and their practical application. Analytical chemistry has profited from the evolution of ILs in diverse contexts, ranging from their applications in microextractions to uses as matrices for mass spectrometric determinations. Their use in sample preparation has meant significant improvements in terms of miniaturization and analytical performance, and given place to new techniques based on liquid-liquid and solid-phase extractions; the latter greatly driven forward by the combination of ILs with nanomaterials. Furthermore, electrodes have been prepared by combining ILs with different modern materials, significantly improving the sensitivity and selectivity of electroanalytical methods. Moreover, the implementation of ILs as additives to mobile and stationary phases in separation techniques has been proved to improve liquid and gas chromatography, as well as capillary electrophoresis, in terms of the number of analytes that can be efficiently separated and of the useful life of columns, representing also a promising alternative to environmentally dangerous organic solvents. Additionally, their application as matrix modifiers and as ion-pairing additives has introduced their use in mass spectrometry. In this review, the design and implementation of innovative and highly efficient analytical methods based on ILs for the sensitive and selective determination of diverse analytes in environmental matrices is described. Critical issues that have arisen from their application and future challenges in electrochemical, separation and preconcentration techniques based on these solvents are also presented.  相似文献   

4.
Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine.  相似文献   

5.
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100 °C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance.  相似文献   

6.
In recent years, room temperature ionic liquids (RTILs) have proven to be of great interest to analytical chemists. One important development is the use of RTILs as highly thermally stable GLC stationary phases. To date, nearly all of the RTIL stationary phases have been nitrogen-based (ammonium, pyrrolidinium, imidazolium, etc.). In this work, eight new monocationic and three new dicationic phosphonium-based RTILs are used as gas–liquid chromatography (GLC) stationary phases. Inverse gas chromatography (GC) analyses are used to study the solvation properties of the phosphonium RTILs through a linear solvation energy model. This model describes the multiple solvation interactions that the phosphonium RTILs can undergo and is useful in understanding their properties. In addition, the phosphonium-based stationary phases are used to separate complex analyte mixtures by GLC. Results show that the small differences in the solvent properties of the phosphonium ILs compared with ammonium-based ILs will allow for different and unique separation selectivities. Also, the phosphonium-based stationary phases tend to be more thermally stable than nitrogen-based ILs, which is an advantage in many GC applications.  相似文献   

7.
The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem.  相似文献   

8.
Polycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O‐substitution, were considered as experimental parameters for the design of the desired ionic liquids. A total number of five new phases based on a common benzene core respectively exhibited column efficiencies around to 2500 plates/m, broad operating temperature ranges and also, even more importantly, good thermal stabilities (bleeding temperature between 260 and 365°C), finding variations in the selectivity and analytes elution orders depending on the IL structures. Their solvation characteristics were evaluated using the Abraham solvation parameter model, establishing clear correlations between their cation structure and retention capability with respect to certain analytes. The study of relationships between the ILs structure and solvation parameters gives us an idea of the IL stationary phase to be used for specific separations.  相似文献   

9.
Ionic liquids (ILs) have been the focus of many scientific investigations including the field of analytical microextractions. ILs have many advantages over traditional organic solvents making them excellent candidates as extraction media for a variety of microextraction techniques. Many physical properties of ILs can be varied, and the structural design and make-up can be tuned to impart desired functionality for enhancement of analyte extraction selectivity, efficiency, and sensitivity. This paper provides a brief overview of ionic liquids and highlights trends in three important sample-preparation techniques, namely, single drop microextraction, solid-phase microextraction, and dispersive liquid–liquid microextraction in terms of performing task-specific extractions using these highly versatile solvents.  相似文献   

10.
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.  相似文献   

11.
Yanfei Shen 《Talanta》2009,78(3):805-808
Although colorless ionic liquids (ILs) are most desirable, as synthesized they frequently bear color, despite appearing pure by most analytical techniques. It leads to some uncertainties and limits for the fundamental research and applications of ILs, such as spectroscopy. Using 1-butyl-3-methylimidazolium bromide (BMIMBr), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) as models, we demonstrated that following classic preparing method except that the water was added as solvent, colorless ILs could be facilely prepared. Neither critical pre-treatment of starting materials and pre-cautions during the reaction nor time-consuming and costly post-decolor-purification was needed. The effects of “on water” reaction conditions on preparing colorless IL and the reason why using water as solvent could produce colorless ILs were also preliminary investigated. It was found that the reactant solubility played an important role in the preparation of colorless ILs. Not only as a method to evaluate the quality of as-synthesized ILs, but also as a spectroscopic analytical applications, UV-vis spectra showed that the ILs by this “on water” method was spectral pure and sufficient for future fundamental spectroscopic research and applications.  相似文献   

12.
张琪 《色谱》2020,38(9):1028-1037
在现代分离科学中,手性化合物的分离分析一直是研究的重点和难点。相比于高效液相色谱(HPLC)、气相色谱(GC)等传统色谱分析方法,毛细管电泳(CE)技术凭借其高效率、低消耗、分离模式多样化等诸多优势,已经发展成为手性分离研究领域最有应用前景的分析方法之一。近年来,研究人员在CE手性分析方法的构建过程中,基于毛细管电动色谱(EKC)、配体交换毛细管电泳(LECE)、毛细管电色谱(CEC)等各种基础电泳模式,不断地对传统手性分离体系进行优化和改造,构建出了许多高性能的新型手性CE分离体系。如利用各类功能化离子液体以"手性离子液体协同拆分""手性离子液体配体交换""离子液体手性选择剂"等模式设计出多种基于离子液体的CE手性分离体系;利用纳米材料独特的尺寸效应、多样性、可设计性等特点,直接或与传统手性选择剂有机结合构建CE手性分离体系。此外,金属有机骨架材料修饰、低共熔溶剂修饰、非连续分段式部分填充等各式新颖的CE手性分离体系也都被研究人员成功开发,并表现出较大的发展潜力。该综述将对近年来(尤其是2015~2019年)此类新型CE手性分离体系的发展状况进行梳理,并结合相应的手性识别机理研究和手...  相似文献   

13.
Ionic liquids (ILs) are non-molecular solvents, which are mainly characterized as possessing low melting points, low-to-negligible vapor pressures, and high thermal stability. Their unique solvation properties, coupled to the fact that they can be structurally tailored for specific applications, have increased study of ILs in many areas of fundamental and applied chemistry. Thus, ILs have successfully been utilized as novel solvents in different extraction and microextraction schemes in recent years, but mainly with environmental samples.Food samples are quite complicated matrices from an analytical point of view. They contain a large range of chemical substances, and sometimes they also have a high fat content. Even with the most advanced analytical techniques, food sampling and food-sample preparation prior to the analytical determination are labor-intensive and time-consuming, and normally require relatively large amounts of organic solvents.In this review, we summarize the most recent analytical developments aimed at employing ILs as a tool in food analysis. We discuss practical applications to determine metals and organic compounds in food samples of quite different natures, with special emphasis to the extraction step at which the IL is introduced, and the advantages of the IL-based methods developed over conventional extraction methods.  相似文献   

14.
The extractability of some typical environmental pollutants in ionic liquids (ILs) was screened by using a simple one-step liquid phase microextraction procedure. It was demonstrated that 1-alkyl-3-methylimidazolium hexafluorophosphate ([CnMIM][PF6], n = 4, 8), two typical ILs, could effectively extract a set of 45 typical environmental pollutants including BTEX (benzene, toluene, ethylbenzene, and xylene), polycyclic aromatic hydrocarbons, phthalates, phenols, aromatic amines, herbicides, organotin, and organomecury. Analytes in 10 mL sample solution held in a 15 mL vial were extracted by a 5 microL drop of ILs suspended on the needle of a high-performance liquid chromatography (HPLC) microsyringe; this was followed by HPLC, atomic absorption spectrometry, or cold-vapor atomic fluorescence spectrometry determination. The enrichment factors determined were in the range of 5-168 for 15 min extraction by [C4MIM][PF6] and 4-178 for 30 min extraction by [C8MIM][PF6], respectively, which indicates that ILs might be considered as potential environmentally benign alternative recyclable solvents for the enrichment of environmental pollutants.  相似文献   

15.
Zhang R  Li N  Wang C  Bai Y  Ren R  Gao S  Yu W  Zhao T  Zhang H 《Analytica chimica acta》2011,704(1-2):98-109
The foaming property of ionic liquids (ILs) was found and the factors that can influence foamability of the ILs were investigated. Based on the property of the ILs, the foam floatation-solid phase extraction (FF-SPE) was developed. The IL-based FF-SPE was applied to the extraction and concentration of steroid hormones, including corticosterone, 17-β-estadiol, 17-α-estradiol, 19-nortestosterone, estrone, testosterone, 17-α-hydroxyprogesterone, medroxyprogesterone, chloromadinon 17-acetate, norethisterone acetate, medroxyprogesterone-17-acetate, progesterone, 17-β-estradiol 3-benzoate and testosteron 17-propionate in water samples and then the steroid hormones were determined by high-performance liquid chromatography. The extraction and concentration were performed synchronously in 10 min. Some experimental conditions were examined and optimized. The recoveries ranged from 50.6% to 95.2% for lake water sample and from 53.4% to 98.7% for rain water sample. The precision ranged from 2.43% to 7.43% for the lake water sample and 2.07-7.01% for rain water sample. Based on the foaming property of ILs, the application of foam floatation should be widened.  相似文献   

16.
Ionic liquids (ILs) are promising gas chromatography (GC) stationary phases due to their high thermal stability, negligible vapor pressure, and ability to solvate a broad range of analytes. The tunability of ILs allows for structure modification in pursuit of enhanced separation selectivity and control of analyte elution order. In this study, the solvation parameter model is used to characterize the solvation interactions of fifteen ILs containing various cationic functional groups (i.e., dimethylamino, hydroxyl, and ether) and cation types paired with various counter anions, namely, tris(pentafluoroethyl)trifluorophosphate (FAP(-)), bis[(trifluoromethyl)sulfonyl]imide (NTf(2)(-)), thiocyanate (SCN(-)), tricyanomethide (C(CN)(3)(-)), tetracyanoborate (B(CN)(4)(-)), and bis[oxalate(2-)]borate (BOB(-)). The presence of functional groups affected the hydrogen bond basicity, hydrogen bond acidity, as well as dispersion interactions of the resulting ILs, while the change of cation type yielded modest influence on the dipolarity. The switch of counter anions in unfunctionalized ILs produced compounds with higher dipolarity and hydrogen bond basicity. The dipolarity and hydrogen bond basicity of ILs possessing cyano-containing anions appeared to be inversely proportional to the cyano content of the anion. The modification of IL structure resulted in a significant effect on the retention behavior as well as separation selectivity for many solutes, including reversed elution orders of some analytes. This study provides one of the most comprehensive examinations up-to-date on the relation between IL structure and the resulting solvation characteristics and gives tremendous insight into choosing suitable ILs as GC stationary phases for solute specific separations.  相似文献   

17.
Ionic liquids (ILs) containing the tris(pentafluoroethyl)trifluorophosphate anion [FAP] have attracted increased attention due to their unique properties including ultrahigh hydrophobicity, hydrolytic stability, and wide electrochemical window. In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. The role of the functional groups, nature of the counter anion, and cation type on the system constants were evaluated. ILs containing [FAP] possessed lower hydrogen bond basicity than NTf2-based ILs having the same cationic component; in the case of hydroxyl-functionalized cations, the presence of [FAP] led to an enhancement of the hydrogen bond acidity, relative to the NTf2-analogs. The system constants support the argument that [FAP] weakly coordinates the cation and any appended functional groups, promoting properties of the cation which might be masked by stronger interactions with other anion systems. The chromatographic performance of the IL stationary phases was evaluated by examining the retention behavior and separation selectivity for chosen analytes. The results from this work can be used as a guide for choosing FAP-based ILs capable of exhibiting desired solvation properties while retaining important physical properties including high thermal stability and high hydrophobicity. Figure In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with tris(pentafluoroethyl)trifluorophosphate [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

19.

The exceptional properties of the ILs make them ideal for gas chromatography stationary phases. New stationary phases exhibiting good separation selectivity, high efficiency, and high thermal stability are in high demand. Recently, several gas chromatographic capillary columns containing IL stationary phases of various polarities have been introduced on the market. The aim of this work is to extend the applications of the ILs as GC column coatings. The effectiveness of five different commercial IL columns (SLB™-IL59, SLB™-IL76, SLB™-IL82, SLB™-IL100 and SLB™-IL111) for the analysis of two different families of emerging contaminants of environmental concern (plasticizers and synthetic musk fragrances) has been explored. The results obtained for these two families of compounds are compared with the ones obtained when using a (5 %-phenyl)-methylpolysiloxane column. For three of these IL columns, applications have not yet been described. Good resolution for the most of the studied emerging pollutants belonging to five different analytical groups (adipates, phthalates, macrocyclic musks, nitromusks and polycyclic musks) was achieved in all the IL columns.

  相似文献   

20.
Ionic liquids(ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO_2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO_2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO_2 to organic carbonates are discussed in detail,including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号