首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

2.
A novel, facile and inexpensive solid phase extraction (SPE) method using ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol grafted Fe3O4 nanoparticles coupled with spectrofluorimetric detection was proposed for determination of aflatoxin M1 (AFM1) in liquid milk samples. The method uses the advantage fluorescence enhancement by β-cyclodexterin complexation of AFM1 in 12% (v/v) acetonitrile–water and the remarkable properties of Fe3O4 nanoparticles namely high surface area and strong magnetization were utilized to achieve high enrichment factor (57) and satisfactory extraction recoveries (91–102%) using only 100 mg of magnetic adsorbent. Furthermore, fast separation time of about 15 min avoids many time-consuming column-passing procedures of conventional SPE. The main factors affecting extraction efficiency including pH value, desorption conditions, extraction/desorption time, sample volume, and adsorbent amount were evaluated and optimized. Under the optimal conditions, a wide linear range of 0.04–8 ng mL−1 with a low detection limit of 0.015 ng mL−1 was obtained. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method.  相似文献   

3.
Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100 mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009–0.020 μg L−1 in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L−1 with correlation coefficients (R2) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83–107%, were also obtained for the real sample analysis.  相似文献   

4.
A magnetic carbon nanomaterial for Fe3O4 enclosure hydroxylated multi-walled carbon nanotubes (Fe3O4-EC-MWCNTs-OH) was prepared by the aggregating effect of Fe3O4 nanoparticle on MWCNTs-OH, and combined with high-performance liquid chromatography (HPLC)/diode array detection (DAD) to determine the aconitines (aconitine, hypaconitine and mesaconitine) in human serum samples. Compared with other extraction modes investigated in experiment, Fe3O4-EC-MWCNTs-OH sorbents showed a good affinity to target analytes. Some important parameters that could influence extraction efficiency of aconitines, including the extraction mode, amounts of Fe3O4-EC-MWCNTs-OH, pH of sample solution, extraction time, desorption solvent and desorption time, were optimized. Under optimal conditions, the recoveries of spiked serum samples were between 98.0% and 103.0%; relative standard deviations (RSDs) ranged from 0.9% to 6.2%. The correlation coefficients varied from 0.9996 to 0.9998. The limits of detection ranged from 3.1 ng mL−1 to 4.1 ng mL−1 at a signal-to-noise ratio of 3. The experimental results showed that the proposed method was feasible for the analysis of aconitines in serum samples.  相似文献   

5.
In this paper, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)-coated Fe3O4 magnetic nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction was investigated for the preconcentration of two chlorophenols (CPs) in environmental water samples prior to HPLC with UV detection at 285 nm. The high surface area and excellent adsorption capacity of the Fe3O4 NPs after modification with C16mimBr were utilized adequately in the SPE process. By the rapid isolation of Fe3O4 NPs through placing a strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conventional SPE method with a column can be avoided. A comprehensive study of the adsorption conditions such as the zeta-potential of Fe3O4 NPs, added amounts of C16mimBr, pH value, standing time and maximal extraction volume were also presented. Under optimized conditions, two analytes of 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were quantitatively determined. The method was then used to determine the two CPs in real environmental water samples. The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (74–90%) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the two CPs were obtained with only a small amount of Fe3O4 NPs (40 mg) and C16mimBr (24 mg).  相似文献   

6.
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe3O4 NPs not only avoids the dissolving of Fe3O4 NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1 g Fe3O4/Al2O3 NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 μg L−1, respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe3O4/Al2O3 NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples.  相似文献   

7.
Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe3O4 nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m2 g−1), high pore volume (0.39-0.73 cm3 g−1) along with high magnetic response (MS up to 28.4 emu g−1 at 300 K). Calcination of samples resulted in partial oxidation of Fe3O4 to α-Fe2O3. The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, HC was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones.  相似文献   

8.
In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe3O4 nanoparticles (Fe3O4@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe3O4@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe3O4@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount of sorbent, 100 mg; NaCl concentration, 30% (w/v); sample volume, 45 mL; extraction time, 10 min; and 100 μL of ethyl acetate for desorption of the analytes within 2 min. Under optimized conditions, preconcentration factors for DBP, DEHP, and DOA were obtained as 86, 194, and 213, respectively. The calibration curves were linear (R2 > 0.998) in the concentration range of 0.4–100 μg L−1 for both DEHP and DOA and 0.7–100 μg L−1 for DBP. The limits of detection (LODs) were obtained in the range of 0.2–0.4 μg L−1. The intra-day relative standard deviations (RSDs%) based on four replicates were obtained in the range of 4.0–12.3%. The proposed procedure was applied to analysis of water samples including river water, bottled mineral water, and boiling water exposed to polyethylene container (after cooling) and recoveries between 85 and 99% and RSDs lower than 12.8% were obtained.  相似文献   

9.
Unique magnetic properties of a ternary uranate Ba2U2O7 are reported. Magnetic susceptibility measurements reveal that this compound undergoes a magnetic transition at 19 K. Below this temperature, magnetic hysteresis was observed. The results of the low-temperature specific heat measurements below 30 K support the existence of the second-order magnetic transition at 19 K. Ba2U2O7 undergoes a canted antiferromagnetic ordering at this temperature. The magnetic anomaly which sets in at 58 K may be due to the onset of one-dimensional magnetic correlations associated with the linear chains formed by U ions. The analysis of the experimental magnetic susceptibility data in the paramagnetic temperature region gives the effective magnetic moment μeff=0.73 μB, the Weiss constant θ=−10 K, and the temperature-independent paramagnetic susceptibility χTIP=0.14×10−3 emu/mole.The magnetic susceptibility results and the optical absorption spectrum were analyzed on the basis of an octahedral crystal field model. The energy levels of Ba2U2O7 and the crystal field parameters were determined.  相似文献   

10.
In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r2) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L−1, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs.  相似文献   

11.
In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett–Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box–Behnken design. Calibration curves were linear (R2 > 0.990) in the range of 0.1–1000 μg L−1 for ciprofloxacin (CIP) and 0.5–500 μg L−1 for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05 μg L−1. The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction.  相似文献   

12.
We report on the synthesis, crystal structure and scintillation property of a new compound Ba3InB9O18. This compound crystallizes in space group P63/m with unit cell of dimensions a=7.1359(3) Å, c=16.6151(8) Å and V=732.697 Å3 with two Ba3InB9O18 molecular formula. Its crystal structure is made up of planar B3O6 groups parallel to each other along the 〈0001〉 direction, regular InO6 octahedra, irregular BaO6 hexagons and BaO9 polyhedra to form an analog structure of Ba3YB9O18. DTA and TGA curves for Ba3InB9O18 show that it is a chemically stable and congruent melting compound. Its X-ray excited luminescence spectra show an intense emission band in the range of 360-500 nm with a maximum at 400 nm. Light yield for Ba3InB9O18 is about 75% as large as that for BGO under the same measurement conditions. There may exist a correlation between the scintillation properties and the crystal structural features of Ba3InB9O18.  相似文献   

13.
Two pure light rare earth iron garnets Pr3Fe5O12 and Nd3Fe5O12 single crystals were synthesized under mild hydrothermal conditions and structurally characterized by single crystal and powder X-ray diffraction methods. Both compounds crystallize in cubic space group Ia3?d with lattice parameters a=12.670(2) Å for Pr3Fe5O12 and a=12.633(2) Å for Nd3Fe5O12, respectively. The synthesis of compounds was studied with regard to phase evolution and morphology development with hydrothermal conditions. We proposed the formation mechanisms and formulated a reasonable explanation for their growth habits. Ferrimagnetic Curie temperatures which have been inferred from thermo-magnetization curves were 580 K for Pr3Fe5O12 and 565 K for Nd3Fe5O12, and the transitions of long range order were also evidenced by differential scanning calorimetry method. The result of magnetic properties has shown that moments of the large radius Pr3+ and Nd3+ ions are parallelly coupled with net moments of iron ions.  相似文献   

14.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

15.
Iron oxide modified with single- or double-metal additives (Cr, Ni, Zr, Ag, Mo, Mo-Cr, Mo-Ni, Mo-Zr and Mo-Ag), which can store and supply pure hydrogen by reduction of iron oxide with hydrogen and subsequent oxidation of reduced iron oxide with steam (Fe3O4 (initial Fe2O3)+4H2↔3Fe+4H2O), were prepared by impregnation. Effects of various metal additives in the samples on hydrogen production were investigated by the above-repeated redox. All the samples with Mo additive exhibited a better redox performance than those without Mo, and the Mo-Zr additive in iron oxide was the best effective one enhancing hydrogen production from water decomposition. For Fe2O3-Mo-Zr, the average H2 production temperature could be significantly decreased to 276 °C, the average H2 formation rate could be increased to 360.9-461.1 μmol min−1 Fe-g−1 at operating temperature of 300 °C and the average storage capacity was up to 4.73 wt% in four cycles, an amount close to the IEA target.  相似文献   

16.
The morphologies of the charge carriers in the perovskite system SrFe1−xTixO3−δ are explored by transport and magnetic measurements. Oxygen vacancies are present in all samples, but they do not trap out the Fe3+ ions they introduce. The x=0.05 composition was prepared with three different values of δ. They all show small-polaron conduction above 225 K; but where there is a ratio c=Fe4+/Fe<0.5, the polaron morphology appears to change progressively with decreasing temperature below 225 K to two-Fe polarons that become ferromagnetically coupled in an applied magnetic field at lower temperatures; With an applied field of 2500 Oe, divergence of the paramagnetic susceptibility for zero-field-cooled and field-cooled samples manifests a greater stabilization of ferromagnetic pairs on cooling in the applied field. With a c>0.5, the data are consistent with a disproportionation reaction 2Fe4+=Fe3++Fe(V)O6/2 that inhibits formation of two-Fe polarons and, on lowering the temperature, creates Fe3+-Fe(V)-Fe3+ superparamagnetic clusters.  相似文献   

17.
Quadruple perovskites Ba4LnRu3O12 (Ln=La, Nd, Sm-Gd, Dy-Lu) were prepared and their magnetic properties were investigated. They adopt the 12L-perovskite-type structure consisting of Ru3O12 trimers and LnO6 octahedra. All of these compounds show an antiferromagnetic transition at 2.5-30 K. For Ba4NdRu3O12, ferrimagnetic ordering has been observed at 11.5 K. The observed magnetic transition is due to the magnetic behavior of the Ru4.33+3O12 trimer with S=. Magnetic properties of Ba4LnRu3O12 were compared with those of triple perovskites Ba3LnRu2O9 and double perovskites Ba2LnRuO6.  相似文献   

18.
The core-shell structured luminomagnetic microsphere composed of a Fe3O4 magnetic core and a continuous SiO2 nanoshell doped with Eu(DBM)3·2H2O fluorescent molecules was fabricated by a modified Stöber method combined with a layer-by-layer assembly technique. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), confocal microscopy, photoluminescence (PL), and superconducting quantum interface device (SQUID) were employed to characterize the Fe3O4@SiO2@Eu(DBM)3·2H2O/SiO2 microspheres. The experimental results show that the microshpere has a typical diameter of ca. 500 nm consisting of the magnetic core with about 340 nm in diameter and silica shell doped with europium complex with an average thickness of about 80 nm. It possesses magnetism with a saturation magnetization of 25.84 emu/g and negligible coercivity and remanence at room temperature and exhibits strong red emission peak originating from electric-dipole transition 5D0 → 7F2 (611 nm) of Eu3+ ions. The luminomagnetic microspheres can be uptaken by HeLa cells and there is no adverse cell reaction. These results suggest that the luminomagnetic microspheres with magnetic resonance response and fluorescence probe property may be useful in biomedical imaging and diagnostic applications.  相似文献   

19.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

20.
Magnetic properties of double perovskite compounds Ba2HoRuO6 and Ba2HoIrO6 have been reported. Powder X-ray and neutron diffraction measurements show that these compounds have a cubic perovskite-type structure with the space group and the 1:1 ordered arrangement of Ho3+ and Ru5+ (or Ir5+) over the 6-coordinate B sites. Results of the magnetic susceptibility and specific heat measurements show that Ba2HoRuO6 exhibits two magnetic anomalies at 22 and 50 K. Analysis of the temperature dependence of magnetic specific heat indicates that the anomaly at 50 K is due to the antiferromagnetic ordering of Ru5+ ions and that the anomaly at 22 K is ascribable to the magnetic interaction between Ho3+ ions. Neutron diffraction data collected at 10 and 35 K show that the Ba2HoRuO6 has a long range antiferromagnetic ordering involving both Ho3+ and Ru5+ ions. Each of their magnetic moments orders in a Type I arrangement and these magnetic moments are anti-parallel in the ab-plane with each other. The magnetic moments are aligned along the c-direction. On the other hand, Ba2HoIrO6 is paramagnetic down to 1.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号