首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of an external magnetic field on the fracture toughness of magnetostrictive materials has been investigated by determining the local stress fields around the tip of a very slender elliptical flaw embedded in an infinite magnetostrictive plane subjected to magnetic loading, based on the assumption of linear magnetization. In this paper, the above-mentioned analytical approach is extended to develop a small-scale magnetic-yielding model. The magnetic saturation zone is constructed and the distributions of magnetic field and magnetization are obtained around the tip of a slender elliptical crack. Based on the complex potential theory, the stress field is obtained in the vicinity of the tip of the slender elliptical crack by implementing the continuity conditions of displacement and resultant force at the interface between the magnetic saturation and magnetoelastic zones. The stress fields near the tip of the slender elliptical crack are obtained for two kinds of soft ferromagnetic materials each with a small induction magnetostrictive modulus. The theoretical results obtained show that the stresses in the neighborhood of a crack-tip are finite even when the elliptical crack reduces to a sharp crack, and are much smaller than the yield stress or the nominal fracture stress of the material. This suggests that, generally, the magnetic field has no obvious effects on the apparent fracture toughness of soft ferromagnetic materials, which is in agreement with the existing experimental results published in the existing literature. In addition, the theoretical analysis illustrates that no crack is magnetically impermeable, and the corresponding boundary conditions are inappropriate for fracture analysis of soft ferromagnetic materials.  相似文献   

2.
This paper presents a numerical model for the analysis of cracked magnetoelectroelastic materials subjected to in-plane mechanical, electric and magnetic dynamic time-harmonic loading. A traction boundary integral equation formulation is applied to solve the problem in combination with recently obtained time-harmonic Green’s functions (Rojas-Diaz et al., 2008). The hypersingular boundary integral equations appearing in the formulation are first regularized via a simple change of variables that permits to isolate the singularities. Relevant fracture parameters, namely stress intensity factors, electric displacement intensity factor and magnetic induction intensity factor are directly evaluated as functions of the computed nodal opening displacements and the electric and magnetic potentials jumps across the crack faces. The method is checked by comparing numerical results against existing solutions for piezoelectric solids. Finally, numerical results for scattering of plane waves in a magnetoelectroelastic material by different crack configurations are presented for the first time. The obtained results are analyzed to evaluate the dependence of the fracture parameters on the coupled magnetoelectromechanical load, the crack geometry and the characteristics of the incident wave motion.  相似文献   

3.
This paper examines the dynamic response of an interface crack between two dissimilar magneto-electro-elastic materials subjected to the mechanical and electric magnetic impacts. The magneto-electric impermeable boundary conditions are adopted. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations in Laplace transform domain, which are solved numerically. Lots of numerical results are given graphically in time domain. The effects of electric impact loading and magnetic impact loading on dynamic energy density factors are discussed. Crack growth and propagation is predicted. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

4.
The electroelastic and magnetoelastic analyses in the dielectric and magnetic materials should be studied together with their environments. From the first thermodynamic law a general variational theory is proposed. Some nonlinear variational principles with electric or magnetic Gibbs free energy and the complete governing equations, derived from these principles are given in this paper. The governing equations are complete and useful in engineering. It is noted that the virtual displacements do not only produce the variation of the strain, but also produce the variation of electric potential or magnetic potential. It is also noted that even in a small deformation the effect of the volume change on the electromagnetic field cannot be neglected. Just due to these two reasons the Maxwell stress can be naturally derived from the variational equation and it is unique. In these derivations new elctrostrictive and magnetostrictive coefficients are introduced and the anti-symmetric part of the stress can be naturally got. These principles are also useful for computational mechanics.  相似文献   

5.
This article is concerned with the theoretical analysis of the functionally graded magneto-electro-thermoelastic strip due to unsteady and nonuniform surface heating in the width direction. We analyze the transient thermal stress problem for a functionally graded strip constructed of the anisotropic and linear magneto-electro-thermoelastic materials using a laminated composite mode as one of theoretical approximation. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the solution for the simply supported and functionally graded magneto-electro-thermoelastic strip under a plane strain state. As an illustration, we carried out numerical calculations for a functionally graded strip composed of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, and examined the behaviors in the transient state for temperature change, stress, electric potential and magnetic potential distributions. Furthermore, the effects of the nonhomogeneity of material on the stresses, electric potential, and magnetic potential are investigated.  相似文献   

6.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

7.
PZT-4紧凑拉伸试样的断裂分析   总被引:1,自引:1,他引:0  
李海军  刘峰  王自强 《力学学报》2008,40(5):701-706
基于线性压电材料的复势理论,通过解析分析,导出了一种分析有限压电板裂纹问题的解析数值方法. 首先,计算了含中心裂纹有限板的断裂参数,与Woo和Wang的解析数值法(Int J Fract, 1993, 62: 203$\sim$218)相比较,表明该方法具有很高的精度和很好的计算效率. 随后,采用该方法和有限元法计算了PZT-4紧凑拉伸试样在绝缘裂纹面边界条件下断裂时的断裂参数,发现各断裂参数的临界值分散性很大,不能作为压电材料的单参数断裂准则. 进而,针对试样真实的裂隙形状,采用有限元法计算了裂隙尖端的应力、电位移场,比较了裂隙内介质的介电性能对裂隙尖端场的影响,计算了带微裂纹的真实裂隙模型的断裂参数并进行了理论分析.   相似文献   

8.
In this paper, we developed a Stroh-type formalism for anti-plane deformation and then investigated the fracture mechanics for an elliptical cavity in a magnetoelectroelastic solid under remotely uniform in-plane electromagnetic and/or anti-plane mechanical loading, which allowed us to take the electromagnetic field inside the cavity into account. Reducing the cavity into a crack, we had explicit solutions in closed forms for a mode III crack, which included the extreme cases for an impermeable crack and a permeable crack. The results were illustrated with plots, showing that in the absence of mechanical loads, an applied electric or magnetic field, positive or negative, always tended to close the crack. On the other hand, in the presence of a mechanical load, a negative electric or magnetic field retarded crack growth, while a positive field could either enhance or retard crack propagation, depending on the strengths of the applied electric/magnetic fields and the level of the mechanical load as well. In other words, the effect of electric/magnetic fields on the fracture behavior is mechanical load-dependent.  相似文献   

9.
陈宜亨  田文叶 《力学学报》1999,31(5):625-632
研究横观各向同性压电材料中裂纹问题,提出了Bueckner功共轭积分在这类材料中的表达式:并通过引出两类辅助的应力-位移-电位移-电势场,证明功共轭积分和这类材料中的J积分和M积分仍然存在简单的两倍关系由此,各类在脆性材料断裂问题中已广泛应用的权函数方法可顺理成章地推广到压电材料的研究中来.这对独立地确定电位移强度因子和经典的I、II型应力强度因子提供了有力的数学上的工具.进而通过计算机械应变能释放率对压电材料中裂纹的稳定做出判断.  相似文献   

10.
压电介质损伤、断裂力学研究的现状   总被引:10,自引:1,他引:9  
陈增涛  余寿文 《力学进展》1999,29(2):187-196
压电介质的损伤与断裂力学是现代固体力学的重要课题.本文简要地综述了压电介质损伤与断裂力学研究的现状,集中讨论了:(1)裂纹面电边界条件的不同模型及其求解的结果;(2)宏观连续力学与细观力学用于压电介质的损伤与断裂的静力学分析;(3)压电介质动态断裂分析的某些新结果.文末,指出了今后在压电介质损伤与断裂研究的某些有吸引力的研究方向  相似文献   

11.
本文求解平面应变状态下磁电弹复合材料半平面和刚性导电导磁圆柱压头的二维微动接触问题。假设压头具有良好的导电导磁性,且表面电势和磁势是常数。微动接触依赖载荷的加载历史,所以首先求解单独的法向加载问题,然后在法向加载问题的基础上求解循环变化的切向加载问题。整个接触区可以分为内部的中心粘着区和两个外部的滑移区,其中滑移区满足Coulomb摩擦法则。利用Fourier积分变换,磁电弹半平面的微动接触问题将简化为耦合的Cauchy奇异积分方程组,然后数值离散为线性代数方程组,利用迭代法求解未知的粘着/滑移区尺寸、电荷分布、磁感应强度、法向接触压力和切向接触力。数值算例给出了摩擦系数、总电荷和总磁感应强度对各加载阶段的表面接触应力、电位移和磁感应强度的影响。  相似文献   

12.
The antiplane analysis is made for a bimaterial BaTiO3–CoFe2O4 composite wedge containing an interface crack. The coupled magneto-electro-elastic field is induced by the piezoelectric/piezomagnetic BaTiO3–CoFe2O4 composite materials. For the crack problems, the intensity factors of stress, strain, electric displacement, electric field, magnetic induction and magnetic field at crack tips are derived analytically. Also, the energy density criterion is applied to predict the fracture behavior of the interface crack. The numerical results also show that the energy release rate for a crack in a single wedge is negative.  相似文献   

13.
本文研究了面内电磁势载荷作用下双层压电压磁复合材料中共线界面裂纹问题.考虑了压电材料的导磁性质和压磁材料的介电性质,引入了界面电位移和磁感强度的连续性条件.利用Fourier 变换得到一组第二类Cauchy 型奇异积分方程.进一步导出了相应问题的应力强度因子、电位移强度因子和磁感强度强度因子的表达式,给出了应力强度因子的数值结果.结果表明电磁载荷会导致界面裂纹尖端I、II 混合型应力奇异性,同时还伴随着电位移和磁感强度的奇异性.比较了双裂纹左右端的应力强度因子,发现在面内极化方向上施加面内磁势载荷时共线裂纹内侧尖端区域的两个法向应力场发生互相干涉增强.  相似文献   

14.
This paper investigates the fracture problem of a piezoelectric cylinder with a periodic array of embedded circular cracks. An electro-mechanical fracture mechanics model is established first. The model is further used to the thermal fracture analysis of a piezoelectric cylinder subjected to a sudden heating on its outer surface. The temperature field and the associated thermal stresses and electric displacements are obtained and are added to the crack surface to form a mixed-mode boundary value problem for the electro-mechanical coupling fracture. The stress and stress intensities are investigated for the effect of crack spacing. Strength evaluation of piezoelectric materials under the transient thermal environment is made and thermal shock resistance of the medium is given.  相似文献   

15.
This paper investigates the two-dimensional frictionless contact problem of a functionally graded magneto-electro-elastic materials (FGMEEMs) layered half-plane under a rigid flat or a cylindrical punch. It is assumed that the punch is a perfect electro-magnetic conductor with a constant electric potential and a constant magnetic potential. The magneto-electro-elastic (MEE) properties of the FGMEEM layer vary exponentially along the thickness direction. Using the Fourier transform technique, the contact problem can be reduced to Cauchy singular integral equations, which are then solved numerically to determine the normal contact stress, electric displacement and magnetic induction on the contact surface. Numerical results show that the gradient index, punch geometry and magneto-electro-mechanical loads have a significant effect on the contact behavior of FGMEEMs.  相似文献   

16.
Magneto-electro-elastic (MEE) materials usually consist of piezoelectric (PE) and piezomagnetic (PM) phases. Between different constituent phases, there exist lots of interfaces with discontinuous MEE properties. Complex interface distribution brings a great difficulty to the fracture analysis of MEE materials since the present fracture mechanics methods can hardly solve the fracture parameters efficiently of a crack surrounded by complex interfaces. This paper develops a new domain formulation of the interaction integral for the computation of the fracture parameters including stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF) for linear MEE materials. The formulation derived here does not involve any derivatives of material properties and moreover, it can be proved that an arbitrary interface in the integral domain does not affect the validity and the value of the interaction integral. Namely, the interaction integral is domain-independent for material interfaces and thus, its application does not require material parameters to be continuous. Due to this advantage, the interaction integral becomes an effective approach for extracting the fracture parameters of MEE materials with complex interfaces. Combined with the extended finite element method (XFEM), the interaction integral is employed to solve several representative problems to verify its accuracy and domain-independence. Good results show the effectiveness of the present method in the fracture analysis of MEE materials with continuous and discontinuous properties. Finally, the particulate MEE composites composed of PE and PM phases are considered and four schemes of different property-homogenization level are proposed for comparing their effectiveness.  相似文献   

17.
A strip electric–magnetic polarization saturation (SEMPS) model is developed to study the electric and magnetic yielding effects on a crack in magnetoelectroelastic (MEE) media. In this model, the MEE medium is treated as being mechanically brittle, and electrically and magnetically ductile. Analogously to the classic Dugdale model, the electric and magnetic yielding zones in front of the crack are represented for simplicity by two strips. In the electric yielding strip the electric displacement equals the electric displacement saturation and meanwhile in the magnetic yielding zone the magnetic induction equals the magnetic induction saturation. The nonlinear analytical solution of this SEMPS model of crack in an infinite MEE medium is obtained using an integral equation approach. The equivalence between the proposed SEMPS model and the existing strip electric–magnetic breakdown (SEMB) model is demonstrated.To analyze the nonlinear fracture problem in the corresponding finite MEE media, the non-linear hybrid extended displacement discontinuity-fundamental solution (NLHEDD-FS) method is modified, and a multiple iteration approach is adapted to determine the electric and magnetic yielding zones. Comparing with the analytical solution, the applicability and effectiveness of the NLHEDD-FS method is verified. Numerical results based on the SEMPS model for a center crack in infinite and finite MEE strip are presented.  相似文献   

18.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

19.
Fracture behaviors of piezoelectric materials   总被引:2,自引:0,他引:2  
Theoretical analyses and experimental observations of the failure and fracture behaviors of piezoelectric materials are presented. The theoretical analyses are based on the Stroh formalism. A strip dielectric breakdown model is proposed to estimate the effect of electrical non-linearity on the piezoelectric fracture of electrically insulated cracks. The reviewed experiments include the indentation fracture test, the bending test on smooth samples, the fracture test on pre-notched or pre-cracked samples, the environment-assisted fracture test, etc. For electrically insulated cracks, the experimental results show a complicated fracture behavior under combined electrical and mechanical loading. Fracture data are greatly scattered when a static electric field is applied. For electrically conducting cracks, the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate (PZT) ceramics. A charge-free zone model is introduced to understand the failure behavior of conducting cracks in the depoled lead zirconate titanate ceramics under electrical and/or mechanical loading. These theoretical and experimental results indicate that fracture mechanics concepts are useful in the study of the failure behaviors of piezoelectric materials.  相似文献   

20.
磁性斯格明子是在一些铁磁材料中存在的一种重要拓扑磁结构,由于其具有独特的磁-电-力-热多场耦合特性,在未来新型自旋电子器件中有着广泛的应用前景。然而,磁性斯格明子一般需要在外加磁场下才能稳定存在,极大地限制了其在自旋电子器件中的实际应用。本文基于实空间下磁电材料的相场模拟,发现铁电和铁磁复合薄膜中铁电斯格明子可以通过界面变形来稳定铁磁斯格明子。由于力电耦合效应,铁电层中铁电斯格明子的非均匀分布极化在界面产生周期性的非均匀界面变形。界面变形通过力磁耦合效应,使铁磁层中的磁性斯格明子在没有外加磁场的条件下能够稳定存在。本文的研究结果表明,基于磁电复合材料中的力-电-磁耦合效应,通过优化设计复合材料中不同组元的结构,可以实现拓扑磁结构的力学调控,从而为设计基于拓扑磁结构的新型自旋电子器件提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号