共查询到19条相似文献,搜索用时 63 毫秒
1.
2.
3.
4.
现场测量深层岩土热物性方法 总被引:30,自引:1,他引:30
地下岩土的热物性参数是地源热泵地热换热器的设计中所需要的很重要的参数。热物性参数的大小对钻孔的数量及钻孔的深度具有显著的影响,进而影响地源热泵系统的初投资。为了能够在现场测量地下岩土的热物性参数,本文利用一套现场测量设备测量了对地下埋管回路施加的热流与回路中循环水温度随时间的变化,并利用参数估计方法确定地下岩土的热物性参数。 相似文献
5.
采用一种新的实验测量方案,将金属加热单元与温度探测单元合二为一,间接获得了在半导体和微电子学MEMS领域内有重要用途的SiNx薄膜的导热系数、发射率、比热容和热扩散系数,并对实验结果进行了不确定度分析,为微电子电路设计和掩模成型工艺等提供了可靠的热物性数据. 实验结果表明,薄膜的导热系数、发射率、热扩散系数远比相应体材质低,而且还与温度、厚度有关,尺寸效应显著,而比热容则与体材质相差不大.
关键词:
微尺度传热
热物性参数
x薄膜')" href="#">SiNx薄膜
测量技术 相似文献
6.
7.
8.
新工质基础物性参数推算和中高温热泵工质研究 总被引:4,自引:0,他引:4
1前言在供暖和干燥等领域,冷凝温度在80”C左右的热泵装置有广泛的应用。冷凝温度80N100OC这一范围可认为属中高温热泵范畴山,Rll4是一种传统的中高温热泵工质,其ODP(臭氧层消耗潜能)为0的替代物研究正在逐步展开,其中Bare门介绍并分析了冷凝温度低于60”C时的替代工质研究情况;Devotta等问选取了七种有实测数据的工质,取冷凝温度为100“C进行了循环性能计算。本文主要进行两项工作:一是建立新工质基础物性参数(标准沸点兀、临界温度C和临界压力只)的推算方法,为研究开发热泵工质提供基础;二是对有可能得到中高温热泵新… 相似文献
9.
高精度的流体热物性实验研究是新工质工程应用的必要基础,也是获取部分基础物理常量的重要途径(如声速法测量玻尔兹曼常数k、通用气体常数R).本文建立了高精度的流体热物性实验系统,包括温度测量和恒温系统、压力测量及真空配气系统,实现了实验系统的自动控制与数据采集.可用温度范围-40~180℃,不确定度为±5 mK;压力范围0~10 MPa,不确定度为±50 Pa(0~130 kPa),±100 Pa(130~3000 kPa),±0.01%(3~10 MPa).进行了HFC-227ea的饱和蒸气压验证性实验,结果表明本系统运行稳定,具有较高测量精度. 相似文献
10.
REGEN程序是用于回热式低温制冷机中回热器部分的仿真模拟软件。在仅内嵌有氦元素工质的基础上,工作新增了包含N2、H2、Ne、Ar和甲烷等13种低温工质的物性库,介绍了其适用温度、压力区间及计算精度等情况。在保留原有氦-4(4He)的基础上补充了当前最新的4He状态方程的研究成果,以此验证了新物性库与原物性库的衔接性和复现性。使用基于新物性库的REGEN3.3a程序对He、H2和Ne为工质的斯特林型脉管制冷机,进行了模拟优化计算并比较了采用不同工质时制冷机的制冷系数。 相似文献
11.
建立了叠层无氧铜微通道热沉的散热模型,通过理论计算和近似分析,优化了微通道热沉的结构参数;在t=200μm, ωc=60μm, ωf=100μm,p=2. 02×106 Pa时,可获得最小热沉热阻Rthm =4. 205×10-3 K·cm2 /W。根据优化结果,考虑微通道取向对液压降的影响,设计了一种新型大功率半导体激光器叠阵用五层结构叠层无氧铜微通道热沉,并结合实际工艺制备了无氧铜微通道热沉。在实际工作中,优化结果往往要跟实际工艺相结合,如优化所得的水压降为 2 02×106 Pa,这在实际工艺中较难实现。但在热沉实际工作的水压降条件下,热阻为 4. 982×10-3 K·cm2 /W,它能满足高功率激光器叠阵的需要。 相似文献
12.
13.
Plate heat exchangers (PHE) are used for a wide range of applications, thus utilizing new and unique heat sources is of crucial importance. R744 has a low critical temperature, which makes its thermophysical properties variation smoother than other supercritical fluids. As a result, it can be used as a reliable hot stream for PHE, particularly at high temperatures. The local design approach was constructed via MATLAB integrated with the NIST database for real gases. Recently produced HFOs (R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E)) were utilized as cold fluids flowing through three phases: Liquid-phase, two-phase, and gas-phase. A two-step study was performed to examine the following parameters: Heat transfer coefficients, pressure drop, and effectiveness. In the first step, these parameters were analyzed with a variable number of plates to determine a suitable number for the next step. Then, the effects of hot stream pressure and cold stream superheating difference were investigated with variable cold channel mass fluxes. For the first step, the results showed insignificant differences in the investigated parameters for the number of plates higher than 40. Meanwhile, the second step showed that increasing the hot stream pressure from 10 to 12 MPa enhanced the two-phase convection coefficients by 17%, 23%, 75%, and 50% for R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E), respectively. In contrast, increasing the cold stream superheating temperature difference from 5 K to 20 reduced the two-phase convection coefficients by 14%, 16%, 53%, and 26% for R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E), respectively. Therefore, the R744 is suitable for PHE as a driving heat source, particularly at higher R744 inlet pressure and low cold stream superheating difference. 相似文献
14.
In this work, a double-layered microchannel heat exchanger is designed for investigation on gas-to-gas heat transfer. The micro-device contains 133 parallel microchannels machined into a polished polyether ether ketone plate for both the hot side and cold side. The microchannels are 200 μm high, 200 μm wide, and 39.8 mm long. The design of the micro-device allows tests with partition foils in different materials and of flexible thickness. A test rig is developed with the integration of customized pressure and temperature sensors for in situ measurements. Experimental tests on the counter-flow micro heat exchanger have been carried out for five different partition foils and various mass flow rates. The experimental results, in terms of pressure drop, heat transfer coefficients, and heat exchanger effectiveness are discussed and compared with the predictions of the classic theory for conventionally sized heat exchangers. 相似文献
15.
将子结构法和双倒易边界元法联合应用于预测具有三维复杂流存在时管道和消声器的四极参数与传递损失,阐述其基本原理与数值过程.结果表明,双倒易边界元法可正确预测具有较高马赫数亚音速复杂流时管道及消声器的四极参数和传递损失,子结构法可有效降低数值处理过程的复杂性,并提高运算精度和速度. 相似文献
16.
A. A. S. Alshqirate 《实验传热》2013,26(4):377-390
Three different types of heat exchangers were tested experimentally to investigate two-phase heat transfer coefficient and pressure drop during the condensation process of CO2 gas. Experimental results revealed that the convection heat transfer coefficient was enhanced by a factor of four due to the existence of porous media and by a factor of seven due to the use of micro-pipes when compared to the normal macro-tubes. The pressure drop was measured and noticed only in porous tubes and micro-pipes, reaching about 17.5 kPa/m and 8.4 kPa/m, respectively. Comparisons between experimental and correlated results were conducted. 相似文献
17.
High-performance grooved heat pipe modelling requires improved knowledge of flow behavior inside grooves. Even if this flow is usually laminar, a free surface governed by capillarity leads to many difficulties when calculating the mean friction factor of grooves. In the present study, an experimental bench has been developed in order to visualize the liquid–vapor interface channels of four different axially grooved heat pipes. Subsequent experimentation, which is associated with image processing programs, allows for measurement of liquid height and meniscus radius evolution in a groove along the heat pipe axis. As regards laminar flow inside the grooves typically used in heat pipes, the mean friction factor has been measured. 相似文献
18.
M. Varnaseri 《Journal of Macromolecular Science: Physics》2020,59(11):747-773
AbstractIn the present study the effects of the addition of four drag reducing agents (DRA), including carboxy methyl cellulose with high molecular weight (DRA1) and medium molecular weight (DRA2), polyacrylamide (DRA3) and the natural polymer, xanthan gum (DRA4), to water on the pressure drop and heat transfer performance in a finned tube-heat exchanger were compared. Laminar flow (Reynolds number (Re) <1400) was studied to transfer heat between water and air in the finned tube heat exchanger. The results showed that DRA1, with a maximum %DR of 26%, and DRA4, with a maximum %DR of 5%, were the highest and the lowest obtained results, respectively. In the case of heat transfer reduction percentage (%HTR), DRA4, having more than 34.5%, was the highest, and DRA1, with about 13.7%, was the lowest result for the concentration range of 0-100?ppm and temperature range of 40–65?°C. 相似文献
19.
建立二维非线性导热逆问题(IHCP)的数学模型.通过对基本遗传算法逐步改进得到三种不同改进阶段的遗传算法,分别用于反演导热问题中材料的导热系数及其内部热源强度,并比较遗传算法在各改进阶段用于求解导热逆问题时的收敛速度与求解精度,寻求一种使导热逆问题求解效率与计算精度更高的遗传算法改进策略.结果表明:提出的遗传算法改进策略达到了预期目的. 相似文献