首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (high intensity focused ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth.  相似文献   

2.
Radulescu EG  Lewin PA  Nowicki A 《Ultrasonics》2002,40(1-8):497-501
The purpose of this research was to develop, implement and verify a measurement technique enabling rapid and dependable characterization of ultrasound hydrophone probes beyond 20 MHz. The technique employs focused acoustic sources to optimize signal-to-noise ratio and spatial averaging correction model to account for the finite aperture of the hydrophone probes. To minimize calibration time, substitution technique was chosen and its applicability was tested up to 60 MHz. The overall uncertainty of the measurements was on the order of +/- 1 dB. The results are presented for both needle and membrane type PVDF hydrophones having effective diameters ranging from 130-1200 microns. The fundamental limitations of the technique were determined and it is shown that the spatial averaging error is governed by the cross-section of the beam in the focal plane and the ratio of the effective diameters of the reference and tested hydrophone probes. The technique developed is being extended to frequencies beyond 60 MHz.  相似文献   

3.
The spatial averaging effect is strongly dependent on the active aperture of the hydrophone probes used to measure ultrasound fields. An experimental method was developed to determine the effective diameter of the probes as a quasi-continuous function of frequency. The implementation of the method utilizes the time delay spectrometry (TDS) technique and a set of focused acoustic sources. The use of focused sources ensured plane wave conditions for the whole frequency range and TDS eliminated all the reflections from the water tank boundaries. This approach allows effective diameter of circular aperture hydrophones to be determined as a quasi-continuous function of frequency up to 40 MHz. The measurements were performed for both needles and membrane designs having nominal diameters ranging from 50 to 500 microm. The results were successfully employed in the development of spatial averaging correction algorithms. Current efforts are being focused on extension of the frequency range up to 60 MHz by using a novel measurement technique termed time gating frequency analysis.  相似文献   

4.
Knowing the low-frequency response of hydrophones, down to 100 kHz at least, is important for accurate biomedical ultrasound measurements. However, current international standards do not extend below 500 kHz. Furthermore, commercial hydrophone sources typically do not supply sensitivity data below 1-2 MHz. Therefore, to help identify and validate practical calibration methods below 2 MHz, the authors have extended their previous individual efforts in an interlaboratory evaluation of sensitivity calibration using the swept-frequency technique, time delay spectrometry (TDS). Calibrations were performed for needle and membrane PVDF hydrophones using each laboratory's TDS system. Each site employed the same purpose-built broadband source transducers, comprising both plano-concave and biconcave 1-3 piezocomposite elements 4 cm in diameter, with maximum and minimum thicknesses of approximately 1.5 and 0.1 cm. Agreement between laboratories was within the estimated measurement precision of +/-0.6 dB. The results demonstrated that a TDS system employing such transducers constitutes a viable method for hydrophone calibrations in this frequency range.  相似文献   

5.
Frequency responses of different PVDF polymer hydrophone probes, including membrane and needle designs, were measured and are presented in terms of end-of-cable voltage sensitivity versus frequency over a wide, 4.5 octave bandwidth ranging from 0.25 to 2.5 MHz. The probes are seldom, if at all, characterized in this frequency range due to the difficulties associated with a lack of adequate and readily implementable calibration techniques. To this end, a technique, which uses a combination of swept frequency chirp and reciprocity, so that both the relative and absolute plots of sensitivity versus frequency can be obtained, was developed and tested. Salient features of the technique including the design of a 6 octave auxiliary acoustic source are described. The experimental data indicate that a majority of the PVDF membrane hydrophones exhibit a relatively uniform (to within +/- 2 dB) response. While, in general, this is not the case for commercially available needle hydrophone probes, it is evidenced that a careful attention to the PVDF probe design results in frequency characteristics fairly close to those achievable with a membrane design. The overall uncertainty of the calibration technique was estimated to be better than +/- 1.5 dB in the considered frequency range. The results of this work are important to implement procedures for adequate determination of the Mechanical Index (MI) of ultrasound imaging devices. MI is widely accepted as a predictor of potential bioeffects associated with cavitation phenomena. Current efforts are focused on extending the applicability of the technique to frequencies below 100 kHz.  相似文献   

6.
A calibration technique for high-frequency hydrophone utilizing a heterodyne interferometer is presented in this article. The calibration system is mainly composed of optical and signal processing modules. In the displacement measurement, a pellicle is mounted at the surface of water to avoid acousto-optical interaction. The phase modulated carrier signal is digitized and transferred to the computer, then processed by digital phase demodulation. A phase unwrapping algorithm is employed to remove ambiguity of the arctangent function and has proven effective in large displacement measurements. Pellicle displacement and voltage output of the hydrophone in focused ultrasonic field are processed by DFT to determine the amplitudes of the fundamental and harmonic components. Experiments show that the heterodyne technique can provide hydrophone calibration up to 40 MHz, with a slightly smaller sensitivity compared with the National Physical Laboratory (NPL) calibration results for most frequency ranges. Since the heterodyne technique is independent on assumptions about the geometry of the ultrasonic field and the performance of the transducer, it can be easily extended to high frequency and high power ultrasound measurement applications.  相似文献   

7.
8.
温建强  朱厚卿 《应用声学》2016,35(3):195-198
声层析成像技术可以用图像的方式精确完整地反映层析面上检测体内部质量,是一种有效的无损检测手段。在大坝混凝土的安全隐患检测中发挥着越来越重要的作用,本研究旨在研制成像用的接收声波的水听器线阵,水听器线阵由12个水听器阵元组成,阵元间隔2m,水听器由直径40mm的接收型压电园管和前置放大器组成,水听器在低于20kHz的频率范围内,自由场接收电压灵敏度为-173±-3dB,在2MPa静水压力下灵敏度下降不超过2dB。制作了二例了具有清晰接收波形、一致性和可靠性好的水听器线阵,最终为客户在现场实地获得了高质量的层析图像。  相似文献   

9.
光纤水听器灵敏度测试研究   总被引:17,自引:12,他引:5  
彭保进  廖茂  廖延彪  赖淑蓉  张敏  王泽涵 《光子学报》2005,34(11):1633-1638
研制了一套简单可行的光纤水听器灵敏度校准装置,提出了一种简便的测量方法——比对法:将标准压电水听器探头和光纤水听器探头置于同一声场中,并将两探头的输出同时接到数字示波器上进行比对测量.研究表明,振动系统中的盛水容器具有一定的壁厚(>10 mm或1/10桶的外径)时,可将振动系统的谐振峰移出工作频段范围(3~1000 Hz)外.利用此装置结合比对法,校准系统简单,校准速度快,实验的误差小于0.5 dB,能满足一般光纤水听器灵敏度的校准需求.  相似文献   

10.
20 Hz~10 kHz光纤水听器相移灵敏度校准   总被引:1,自引:2,他引:1  
陈毅  张军  张敏  王利威 《光子学报》2014,40(11):1686-1691
利用相位生成载波解调技术精确测量光纤水听器的光相移量,在20 Hz~10 kHz频率范围实现了光纤水听器探头相移灵敏度的校准.20 Hz~1.25 kHz频段采用驻波管比较法进行校准,1.25 kHz~10 kHz频段采用自由场脉冲比较法进行校准.利用本文建立的校准系统,对TMD 35#光纤水听器的相移灵敏度进行校准,校准结果表明,两种方法测得的相移灵敏度具有很好的一致性,在1.25 kHz频率点的相移灵敏度值偏差为0.8 dB.不确定度分析表明,该校准系统的扩展不确定度(k=2)为0.9 dB.  相似文献   

11.
何涛  徐卓华 《应用声学》2010,29(4):302-305
本文介绍了一种我们制作的可应用于100kHz~500kHz频段的标准水听器,水听器敏感元件采用1-3型压电复合材料,通过对敏感元件及水听器结构进行合理设计,从工艺上保证水听器性能的稳定、可靠,制作完成的标准水听器满足高频标准的所有技术指标要求。测试结果表明,水听器的接收灵敏度大于-194dB,频段内灵敏度起伏为2.9dB,最高使用频率-3dB波束宽度大于20度;稳定性考核表明,水听器有良好的温度、时间稳定性,是一种比较理想的中高频标准水听器,适合于水声的校准和中高频声信号测试。  相似文献   

12.
基于对PULSE系统的应用开发研究,建立了矢量水听器实时校准可视化系统,利用ActiveX技术解决了PULSE系统与MATLAB实时通讯问题,这是实时校准的基础。并以矢量水听器理论基础为依据,用比较校准法原理通过MATLAB语言完成编程,同时解决了数据转化问题,通过建立的可视化界面实现对矢量水听器实时校准,提高了校准精度和可靠性,为矢量水听器使用前进行快速高效的校准创造了条件,同时也为其它声学设备校准提供了测量平台。  相似文献   

13.
一种具有声低通滤波特性的无源零差光纤水听器   总被引:2,自引:1,他引:1  
王泽锋  胡永明 《光学学报》2008,28(4):783-786
报道了一种新颖的具有抗混叠功能的无源零差迈克耳孙型光纤水听器.它由一个普通的芯轴型光纤水听器和一个圆柱型亥姆霍兹共振器构成.在驻波罐中对其声压相位灵敏度频响进行了测量,结果表明该光纤水听器具有较好的声低通滤波特性,能有效地抑制声信号中的高频成分,从而实现抗混叠滤波.该光纤水听器的低频声压相位灵敏度主要由传感光纤长度和弹性增敏层的物理特性决定,约为-159 dB(0 dB=1 rad/μPa).在1150 Hz附近出现了一个共振峰,这主要由圆柱型亥姆霍兹共振器的声学特性决定.1150~2280 Hz频段内的灵敏度衰减率约为50 dB/倍频程,1500 Hz以后的灵敏度衰减量大于10 dB.这对于提高我国未来声纳系统的抗干扰能力具有十分重要的意义.  相似文献   

14.
一种光纤光栅水听器灵敏度校准技术研究   总被引:1,自引:1,他引:0  
陈毅  张军  金晓峰  黄晟晔 《光子学报》2012,41(9):1059-1064
为了校准光纤光栅水听器的灵敏度,开展了光纤光栅水听器灵敏度校准技术研究.本文首先介绍了光纤光栅水听器的工作原理;其次,采用可调谐激光器和带工作点控制的强度调制法,实现了光纤光栅水听器的信号解调和稳态测量;在此基础上,利用比较法建立了一种光纤光栅水听器校准系统,校准频率范围为20 Hz~10 kHz;最后,在该频率范围内对采用等效相移布喇格光栅研制的一只光纤光栅水听器的灵敏度进行了校准,对系统的测量不确定度进行了估算.结果表明,该系统可准确校准光纤光栅水听器的灵敏度,扩展不确定度为0.9 dB(k=2).  相似文献   

15.
陈毅  张军  金晓峰  黄晟晔 《光子学报》2014,(9):1059-1064
为了校准光纤光栅水听器的灵敏度,开展了光纤光栅水听器灵敏度校准技术研究.本文首先介绍了光纤光栅水听器的工作原理;其次,采用可调谐激光器和带工作点控制的强度调制法,实现了光纤光栅水听器的信号解调和稳态测量;在此基础上,利用比较法建立了一种光纤光栅水听器校准系统,校准频率范围为20 Hz~10 kHz;最后,在该频率范围内对采用等效相移布喇格光栅研制的一只光纤光栅水听器的灵敏度进行了校准,对系统的测量不确定度进行了估算.结果表明,该系统可准确校准光纤光栅水听器的灵敏度,扩展不确定度为0.9 dB(k=2).  相似文献   

16.
Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique.A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a −6 dB bandwidth of 24 MHz.The transducer has an axial resolution of 180 μm and a spatial resolution of 110 μm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method.The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p < 0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.  相似文献   

17.
医用超声测量用PVDF探针形高频微型水听器的研制   总被引:3,自引:0,他引:3       下载免费PDF全文
寿文德  钱德初 《应用声学》1996,15(5):24-26,40
本文叙述了用于医学超声测量的两种PVDF探针形高频微型水听器的设计特点,结构和它们的性能测量结果,最后介绍在非线性声学研究中的应用实例。  相似文献   

18.
复合液腔高灵敏度水听器   总被引:1,自引:0,他引:1  
探索新的换能器结构是提高换能器性能的主要途径之一。设计了一种利用液腔结构提高接收灵敏度的水听器,称为复合液腔水听器。该水听器用压电陶瓷圆管作为敏感材料,并将其放在一个底部开孔的金属圆桶内。在流体中,开孔圆桶形成两个频率不同的液腔谐振模态,并与压电陶瓷圆管的径向谐振模态衔接在一起,形成具有一定带宽的高接收灵敏度频段。采用有限元方法对水听器进行了优化设计并研制了水听器样机。水池测试结果表明,该水听器样机在1.5 k Hz~11.5 k Hz频率范围内灵敏度保持在-185 d B以上,比传统的压电陶瓷圆管水听器结构具有显著优势。  相似文献   

19.
拖曳线列阵用光纤水听器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了光纤水听器用于拖曳线列阵的研究结果。在保证光纤水听器声相位灵敏度的前提下, 优化设计了光纤水听器的结构,降低了光纤水听器的加速度灵敏度36dB。实验测得在20-1600Hz 频段,该光纤水听器的相位灵敏度为-162.7dB,频段内灵敏度的起伏为±0.7dB,加速度灵敏度小于-30dB。  相似文献   

20.
提出了一种普通单模全光纤化水听器及其驱动电路的设计方法。选择了传输波长为1550nm的单模光纤,采用多量子经阱分布反馈(multi-quantum well distributed feed back, MQW-DFB)半导体激光器作为系统光源,选用MAX3263和MAX038分别设计激光驱动器和高性能正弦波信号发生器,用InGaAs PIN作为光电探测器。实验测试表明:设计的光纤水听器的灵敏度比标准水听器(压电型)高50dB~60dB(在1kHz~30kHz范围)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号