首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of carbonyl fluoride has been determined by electron diffraction. The results have been used in conjunction with the rotational constants reported by Carpenter in a combined structure analysis. The values so obtained are rz (C=O) = 1.1717 ± 0.0013 Å, rz (C-F) = 1.3157 ± 0.0005 Å, and ∠zF-C-F = 107.71 ± 0.08°. These agree with the corresponding parameters estimated by Carpenter from the rotational constants alone. The effective constants, α3, representing the cubic anharmonicity of bond stretching vibrations have been estimated.  相似文献   

2.
The structure of 1,3-dichloropropyne has been studied by gas electron diffraction. The resulting parameters ra have been converted into rαo distances. A geometrical structure has been fitted to these internuclear distances. Thus the following parameters (rαo) have been determined: r(C1-Cl1) = 1.629 (10) A, r(C1C2) = 1.201 (13) Å, r(C3-Cl2) = 1.791 (6) A, ∠(C2-C3-Cl2) = 111.1° (1.0°), ∠(H-C3-H) = 98.8° (3.1°), ∠(C2-C3-H) = 108.7° (3.2°). ∠(Cl1-C1C2) = 176.6° (1.1°), ∠(C1C2-C3) = 182.7° (1.4°). Inconsistencies have been detected between our results and the rotational constants reported by Günther and Zeil. Discussion of the problem including rotational constants of the first excited vibrational state leads to the conclusion that the observed discrepancies are due to temperature effects.  相似文献   

3.
The molecular structure of bis(acetylacetonato)beryllium has been determined by gas electron diffraction. The experimental data were found to be consistent with the D2d model in which the oxygen atoms are arranged tetrahedrally around the central beryllium atom (∠OBeO = 106.0 ± 1.0°). The structural parameters are as follows: rg(Be-O) = 1.615 ± 0.006 Å, rg (C-O) = 1.270 ± 0.004 Å, rg (C-Cring) = 1.397 ± 0.004 Å, rg (C-Cmeth) = 1.499 ± 0.005 Å. The mean amplitudes of vibration were calculated from the normal-vibration treatment using the modified Urey—Bradley force field  相似文献   

4.
The rz structure of 1,1-dichloroethylene has been determined by a joint analysis of the electron diffraction intensity and the rotational constants as follows: rz(CH) = 1.088 ± 0.011, rz(CC) = 1.329 ± 0.003, rz(CCl) = 1.725 ± 0.002 A?, ∠zHCH = 121.4 ± 0.7 andzClCCl = 114.1 ± 0.2°. The uncertainties represent estimated limits of error. The observed structural parameters are compared with those for related compounds and the systematic trends in the bond lengths and bond angles are discussed. The effective constants representing anharmonicity have been obtained from an analysis of the isotopic differences in the rz structure. By using the rz parameters and the effective constants, the equilibrium structure has been estimated as follows: re(CH) = 1.079 ± 0.012, re(CC) = 1.324 ± 0.005, re(CCl) = 1.721 ± 0.003 A?, ∠eHCH = 120.5 ± 0.8 andeClCCl = 114.0 ± 0.3°.  相似文献   

5.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

6.
Dichlorotetramethyldisiloxane is studied by gas-phase electron diffraction at room temperature. The least-squares values of the bond distances (rg) and bond angles () are: r(C---H)=1.084(5) Å, r(Si---O) = 1.624(2) Å, r(Si---C) = 1.852(2) Å, r(Si---Cl) = 2.067(2) Å, SiOSi = 154.0° (1.5), ClSiO = 110.2° (0.8), ClSiC = 109.6°(0.7), HCSi = 111.7°(1.5), OSiC = 110.0°(0.8), τ1 (zero corresponds to the Si---Cl bond trans to the Si---O---Si linkage) = 78°(6) and τ2 = 141°(19). A two-conformer model cannot be ruled out.  相似文献   

7.
The rg structure of cyclopentene oxide has been determined by the simultaneous least squares analysis of electron diffraction and microwave spectroscopic data. The investigation has reaffirmed previous studies indicating that the molecule prefers a boat conformation. The methylene and epoxide flap angles obtained are 152.3±2.1° and 104.7±1.0° respectively. Other structural parameters determined are: rg (C-H avg.) = 1.120±0.004 Å; rg (C-C avg.) = 1.538±0.002 Å; rg (C-O) = 1.443±0.003 Å, and rg (C-C) = 1.482±0.004 Å for the carbon-carbon bond in the three membered epoxide ring. These results compare favorably with the reported structures of ethylene oxide and cyclohexene oxide. A tentative rationalization of the unusual boat conformation is also offered.  相似文献   

8.
The structure of 1-methyl-1-silaadamantane (MSA) has been determined by gas phase electron diffraction. There appears to be somewhat less ring strain at the silicon bridgehead of MSA than in the previously studied 1-methyl-1-silabicyclo[2.2.1]heptane (MSBH). The average SiC bond length [1.879(3) Å is comparable to those found in acyclic organosilicon systems. Also, the average CC bond length (1.547(2) Å) is only slightly longer than that observed for adamantane (1.540(2) Å). Valence angles at the silicon bridgehead experience only a moderate perturbation away from their unstrained tetrahedral values. On this basis it is expected that MSA should be somewhat less reactive than MSBH under SN2 conditions according to the reaction mechanism suggested by L.H. Sommer.  相似文献   

9.
The molecular structure of gaseous epichlorohydrin has been investigated using electron diffraction data obtained at 67°C. The conformational composition at this temperature is such that the molecules exist predominantly in a gauche-2 conformer (where the C---Cl bond is 160° away from the C---O) bond). Refinements showed that 33% (σ = 4) of the molecule exist in the gauche-1 form. The important distances (rg) and angle () with the associated uncertainties are r(C---H) = 1.095(5) Å, r(C---O) = 1.442(3) Å, r(C---C) = 1.475(8) Å, r(C---CM) = 1.523(7) Å, r(C---Cl) = 1.788(2) Å, CCO = 114° (1), CCCM = 119°(1), ClCC = 108.9° (7), and Tau(ClCCO) = −150°(10) (gauche-2) and Tau(ClCCO) = 78° (10) (gauche-1).  相似文献   

10.
The molecular structure of 3-methylthiophene

has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) − r(S---C5) and r(C2=C3) − r(C4=C5) were fixed at the 3–21G* value of 0.002Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   


11.
The molecular structure of 3-methylthiophene has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) - r(S=C5) and r(C2=C3)-r(C4 =C5) were fixed at the 3–21G* value of 0.002 Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

12.
The molecular structure of bis(acetylacetonato)nickel(II) has been determined by a sector-microphotometer gaseous electron-diffraction method. The experimental data were found to be consistent with a monomeric square-planar structure. The structural parameters of the chelate were determined as follows: ∠ ONiO = 93.6 ± 1.1°, rg(Ni-O) = 1.876±0.005A Å, rg(C-0) = 1.273± 0.007 Å, rg(C-Cring) = 1.401 ± 0.010 Å, rg(C-Cmethyl) = 1.504 ± 0.013 Å. The mean amplitudes of vibration and the shrinkage effects were calculated from normal-vibration treatment using the Urey-Bradley force field.  相似文献   

13.
The molecular structure of the title compounds have been investigated by gas-phase electron diffraction. Both molecules exist as about equal amounts of the two gauche conformers. There is no evidence for the presence of a syn conformer, but small amounts of this form cannot be excluded. Some of the important distance (ra) and angle (∠α) parameters for 1,1-dichloro-2-bromomethyl-cyclopropane are: r(CH) = 1.095(19) Å, r(C1C2) = 1.476(11) Å, r(C2C3) = 1.517(31) Å, r(CCH2Br) = 1.543(32) Å, r(CCl) = 1.752(6) Å, r(CBr) = 1.950(13) Å, ∠CCBr = 110.5(1.9)°, ∠ClCCl = 111.9(6)°, ∠CCC = 117.5(1.3)°, σ1 (CC torsion angle between CBr and the three-membered ring for gauche-1) = 116.2(5.6)°, σ2 = −132.7(7.6). For 1,1-dichloro-2-cyanomethyl-cyclopropane the parameter values are: r(CH) = 1.101(16) Å, r(C1C2) = 1.498(9) Å, r(C2C3) = 1.544(21) Å, r(C2C4) = 1.497(33) Å, r(CCN) = 1.466(26) Å, r(CN) = 1.165(8) Å, r(CCl) = 1.754(5) Å, ∠CCCN = 113.7(2.0)°, ∠CCC = 122.8(1.6)°, ClCCl = 112.5(4)°, σ1 = 113(13)°, σ2 = −124(10)°.  相似文献   

14.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

15.
The molecular structure of norbornene has been investigated in the gas phase by combining electron diffraction data with microwave spectroscopic rotational constants. The interatomic distances (rg) and bond angles were obtained by applying a least squares program to the refined experimental molecular diffraction intensities. The CC bond length was found to be 1.336 ± 0.002 Å while the
) bond length was 1. 529 ± 0.007 Å. Other bond lengths and angles included (IUPAC numbering system was used for norbornene): C1-C6 = 1.550 ± 0.020 Å, C1-C7 = 1.566± 0.005 Å, C5-C6 = 1.556 ± 0.005 Å, C-Have. = 1.103 ± 0.003 Å, ∠C1C2C4 = 95.3°. The dihedral angle between planes C1C2C3C4 and C1C6C5C4 is 110.8 ± 1.5° while that between C1C2C3C4 and C1C7C4 is 122.3°. The moments of inertia calculated from ED structure are in good agreement with microwave spectroscopic values.  相似文献   

16.
The molecular structure of vinyldimethylchlorosilane has been determined by gas phase electron diffraction at room temperature. The least squares values of the bond lengths (rg) and bond angles (∠α) are : r(CH) = 1.086(6) Å, r(CC) = 1.347(5) Å, r(SiC=) = 1.838(6) Å, r(SiC) = 1.876(3) Å, r(SiCl) = 2.078(2) Å, ∠CCSi = 127.8° (1.2) and ∠=CSiCl = 107° (1). Models with pure syn form and a mixture of syn and gauche gave equally good agreement with the diffraction data.  相似文献   

17.
18.
The structure of silyi formate, HCOOSiH3, in the gas phase is determined by electron diffraction. The principal bond lengths and angles (ra) are r(Si-O) = 169.5 ± 0.3 pm, r(C-O) = 135.1 ± 0.6 pm, r(C  O) = 120.9 ± 0.7 pm, ∠(C-O-Si) = 116.8 ± 0.5°, ∠(OC-O) = 123.5 ± 0.5°. The silyi group is twisted by 21° away from the planar cis conformation but there is nevertheless a very short (286.5 ±1.0 pm) non-bonded Si ·O contact.  相似文献   

19.
The electron diffraction data for gaseous cyclohexanone, collected at 371 K, combined with microwave rotational constants, can be explained by a single chair conformation. Least-squares analysis of the observed data led to an rg, rα-structure with the following geometrical parameters: rCO = 1.229 Å, rC1C2 = 1.503 Å, rC1C2 = 1.542 Å, rC3C4 = 1.545 Å, rCH = 1.088 Å, ∠ C-CO-C = 115.3°, ∠ CO-C-C = 111.5°, ∠ C-C-C = 110.8°, ∠ H-C-H = 106°. The sp2 -hybridized part of the ring is less puckered, whereas the sp3 part is more puckered than in cyclohexane.  相似文献   

20.
The molecular structure of trifluoroethene was determined from electron diffraction data and the microwave rotational constants of the parent and deuterated molecule, corrected for zero-point vibrational motion. A GVFF adjusted to fit the vibrational frequencies was used for the correction. The molecule was found to be planar. Assuming equal geminal C1—F bond lengths, the following rg distances and rav angles are found: C1—F = 1.316 ± 0.011 Å, C2—F = 1.342 ± 0.024 Å, CC = 1.341 ± 0.012 Å, C—H = 1.100 ± 0.02 Å, ∠C—C—F1 = 123.1 ± 1.5°. ∠C—C—F2 = 124.0 ± 0.6°, ∠C—C—F3 = 120 ± 0.7° (Fl trans to F3) and ∠C—C—H = 124.0 ± 1.7°.The error limits include 3σ (σ = estimated standard deviation) and estimates of the systematic errors. The analysis suggests that all the C1—F distances are not equivalent, neither are the C2—C1—F angles, though the differences are not significant (10% level).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号