首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat flow direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.  相似文献   

2.
The problem of collinear periodic elliptic holes in an anisotropic medium is examined in this paper. By means of Stroh formalism and the conformal mapping method, explicit full domain solutions for the periodic hole problems are presented. The solutions are valid not only for plane problems but also for antiplane problems and the problems whose implane and antiplane deformations are coupled. The stress concentration around the holes is analysed.  相似文献   

3.
In this paper, the problem of a subinterface crack in an anisotropic piezoelectric bimaterial is analyzed. A system of singular integral equations is formulated for general anisotropic piezoelectric bimaterial with kernel functions expressed in complex form. For commonly used transversely isotropic piezoelectric materials, the kernel functions are given in real forms. By considering special properties of one of the bimaterial, various real kernel functions for half-plane problems with mechanical traction-free or displacement-fixed boundary conditions combined with different electric boundary conditions are obtained. Investigations of half-plane piezoelectric solids show that, particularly for the mechanical traction-free problem, the evaluations of the mechanical stress intensity factors (electric displacement intensity factor) under mechanical loadings (electric displacement loading) for coupled mechanical and electric problems may be evaluated directly by considering the corresponding decoupled elastic (electric) problem irrespective of what electric boundary condition is applied on the boundary. However, for the piezoelectric bimaterial problem, purely elastic bimaterial analysis or purely electric bimaterial analysis is inadequate for the determination of the generalized stress intensity factors. Instead, both elastic and electric properties of the bimaterial’s constants should be simultaneously taken into account for better accuracy of the generalized stress intensity factors.  相似文献   

4.
We examine the effect of surface energy on an anisotropic elastic material weakened by an elliptical hole. A closed-form, full-field solution is derived using the standard Stroh formalism. In particular, explicit expressions for the hoop stress, normal, in-plane tangential and out-of-plane displacement components along the edge of the hole are obtained. These expressions clearly demonstrate the effect of elastic anisotropy of the bulk material on the corresponding field variables. When the material becomes isotropic, the hoop stress agrees with the well-known result in the literature while both the in-plane tangential and out-of-plane displacements vanish and the normal displacement is constant along the entire boundary of the elliptical hole.  相似文献   

5.
IntroductionDeterminationofperturbedfieldsinducedbyinclusionshasbeenanimportanttopicforstudyingthephysicalbehaviorsofadvancedcompositematerials.Fromthepointofviewofapplications,theadvancedcompositematerialscanbedividedintotwocategories:oneisthestructu…  相似文献   

6.
An explicit full-field expression of the Green's functions for anisotropic piezoelectric bimaterials with a slipping interface is derived. When the electro-elastic singularity reduces to a pure dislocation in displacement and electric potential, interaction energy between the dislocation and the bimaterials is obtained explicitly while the generalized force on the dislocation is given in a real form which is also valid for degenerate materials. The investigation demonstrates that the boundary conditions at the slipping interface between two piezoelectric materials will exert a prominent influence on the mobility of the dislocation. Project supported by the National Natural Science Foundation of China (No. 59635140).  相似文献   

7.
胡元太  赵兴华 《力学学报》1995,27(4):424-433
文章研究了含椭圆夹杂的各向异性体的二维变形问题,通过Stroh方法及积分方程法确定了介质及夹杂的弹性场。并在此基础上着重分析了受多项式荷载作用的二维介质的平衡问题,证明了夹杂内部的应力应变场能表示成坐标的同阶多项式形式,以二次多项式荷载为例,获得了夹杂周围介质内的应力扰动现象及环向应力分布。  相似文献   

8.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

9.
In this paper, a numerical analysis of impact interfacial fracture for a piezoelectric bimaterial is provided. Starting from the basic equilibrium equation, a dynamic electro-mechanical FEM formulation is briefly presented. Then, the path-independent separated dynamic J integral is extended to piezoelectric bimaterials. Based on the relationship of the path-independent dynamic J integral and the stress and electric displacement intensity factors, the component separation method is used to calculate the stress and electric displacement intensity factors for piezoelectric bimaterials in this finite-element analysis. The response curves of the dynamic J integral, the stress and electric displacement intensity factors are obtained for both homogeneous material (PZT-4 and CdSe) and CdSe/PZT-4 bimaterial. The influences of the piezoelectricity and the electro-mechanical coupling factor on these responses are discussed. The effects of an applied electric field are also discussed.  相似文献   

10.
The Stroh formalism of piezoelectric materials,Fourier analysis and singular integral equation technique were used to investigate the existence of a pulse at the fric- tionless interface in presence of local separation between two contact piezoelectric solids. The two solids were combined together by uniaxial tractions and laid in the electric field. The problem was cast into a set of Cauchy singular integral equations,from which the closed-form solutions were derived.The numerical discussion on the existence of such a slip pulse was presented.The results show that such a slip pulse,which has square root singularities at both ends of the local separation zone,can propagate in most material combinations.And the existence of such a slip pulse will not be affected by the applied mechanical and electric fields in some special material combinations.  相似文献   

11.
A solution is presented for the three dimensional static thermoelastic problem of an absolutely rigid inclusion (anticrack) in the case when a uniform heat flow is directed along the inclusion plane. By using the potential method and the Fourier transform technique, the problem is reduced to a system of coupled two-dimensional singular integral equations for the shear stress jumps across the inclusion. As an illustration, a typical application to the circular anticrack is presented. Explicit expressions for the thermal stresses in the inclusion plane are obtained and discussed from the point of view of material failure.  相似文献   

12.
An exact solution is obtained to the three-dimensional problem of thermoelectroelasticity for a piezoceramic body with a spheroidal cavity. The solutions of static thermoelectroelastic problems are represented in terms of harmonic functions. Far from the cavity, the body is in a uniform heat flow perpendicular to the axis of symmetry of the cavity __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 57–66, November 2005.  相似文献   

13.
An interface crack with an artificial contact zone at the right-hand side crack tip between two dissimilar finite-sized piezoelectric materials is considered under remote mixed-mode loading. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical loads, the stress intensity factors at the singular points are obtained. As a particular case of this solution, the contact zone model (in Comninou’s sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are derived. The dependencies of the contact zone lengths on external load coefficients are illustrated in graphical form. For a particular case of a short crack with respect to the dimensions of the bimaterial compound, the numerical results are compared to the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.  相似文献   

14.
An electro-elastic analysis is performed on an icosahedral quasicrystal with piezoelectric effects containing a straight dislocation. The closed-form expressions for the elastic and electric fields are obtained using the extended Stroh formalism. The effects of piezoelectric constant on the phonon displacement, phason displacement, and electric potential are discussed in detail.  相似文献   

15.
A mathematical model is proposed to execute the features of the non-uniform heat source or sink in the chemically reacting magnetohydrodynamic (MHD) Casson fluid across a slendering sheet in the presence of microorganisms and Cattaneo-Christov heat flux. Multiple slips (diffusion, thermal, and momentum slips) are applied in the modeling of the heat and mass transport processes. The Runge-Kutta based shooting method is used to find the solutions. Numerical simulation is carried out for various values of the physical constraints when the Casson index parameter is positive, negative, or infinite with the aid of plots. The coefficients of the skin factors, the local Nusselt number, and the Sherwood number are estimated for different parameters, and discussed for engineering interest. It is found that the gyrotactic microorganisms are greatly encouraged when the dimensionless parameters increase, especially when the Casson fluid parameter is negative. It is worth mentioning that the velocity profiles when the Casson fluid parameter is positive are higher than those when the Casson fluid parameter is negative or infinite, whereas the temperature and concentration fields show exactly opposite phenomena.  相似文献   

16.
In this investigation, the Stroh formalism is used to develop a general solution for an infinite, anisotropic piezoelectric medium with an elliptic inclusion. The coupled elastic and electric fields both inside the inclusion and on the interface of the inclusion and matrix are given. The project supported by the National Natural Science Foundation of China  相似文献   

17.
IntroductionTheinteractionofdislocationswithinclusionsisofconsiderableimportanceforunderstandingthephysicalbehaviorofmaterials.Suchstudiescanprovidedinformationconcerningcertainstrengtheningorhardeningmechanismsinnumberoftraditionalandcompositemateri…  相似文献   

18.
An explicit solution is constructed for the static problem of thermoelectroelasticity for an infinite transversally isotropic body with a heat-insulated elliptic crack located in the isotropy plane. It is assumed that at a large distance from the crack the body is affected by a uniform heat flow perpendicular to the crack plane. Formulas are derived for the stress intensity factors at the crack end, which depend on the value of the heat flow, crack geometry, and the thermoelectroelastic properties of the piezoceramic body. Translated from Prikladnaya Mekhanika, Vol. 36, No. 2, pp. 72–82, February, 2000.  相似文献   

19.
In this paper, the Green's function technique is used to develop a solution of an infinite, piezoelectric medium containing either an ellipsoidal cavity or a flat elliptical crack. The coupled elastic and electric fields both inside the cavity and on the boundary of the cavity are obtained, and the stress intensity factor and the electric field intensity factor are also obtained for an elliptical crack. It is found that; (1) the coupled elastic and electric fields inside the cavity keep uniform when the external elastic field and electric field are constant; (2) the behavior of the stress and electric field components in the neighborhood of the crack tip shows the classical type of singularity. The project supported by National Natural Science Foundation of China  相似文献   

20.
We derive, by virtue of the unified Stroh formalism, the extremely concise and elegant solutions for two-dimensional and (quasi-static) time-dependent Green's functions in anisotropic magnetoelectroelastic multiferroic bimaterials with a viscous interface subjected to an extended line force and an extended line dislocation located in the upper half-plane. It is found for the first time that, in the multiferroic bimaterial Green's functions, there are 25 static image singularities and 50 moving image singularities in the form of the extended line force and extended line dislocation in the upper or lower half-plane. It is further observed that, as time evolves, the moving image singularities, which originate from the locations of the static image singularities, will move further away from the viscous interface with explicit time-dependent locations. Moreover, explicit expression of the time-dependent image force on the extended line dislocation due to its interaction with the viscous interface is derived, which is also valid for mathematically degenerate materials. Several special cases are discussed in detail for the image force expression to illustrate the influence of the viscous interface on the mobility of the extended line dislocation, and various interesting features are observed. These Green's functions can not only be directly applied to the study of dislocation mobility in the novel multiferroic bimaterials, they can also be utilized as kernel functions in a boundary integral formulation to investigate more complicated boundary value problems where multiferroic materials/composites are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号