首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of flow around a circular cylinder impulsively started into translatory and, rotatory motion with rotational parameter a less than or equal to 8.0 and Reynolds number Re=100 and 200 are investigated in the present paper. The vorticity and stream function N-S equations are adopted here, with a 2nd-order spatial and temporal accuracy ADI (alternating direction implicit) scheme. Moreover the wall vorticity obtain through the principle of conservation of the total computational domain vorticity is determined by domain vorticity and stream function, therefore, through the wall vorticity iteration, the wall vorticity condition is not fixed during the time step. And the present model results indicate: (1) when α>4.0, vortex street suppression is obvious for the computational period (t<60) for all the Re numbers here studied; (2) the higher the αnumber for the same Reynolds number, the slower the upper main vortex proceeds; (3) the maximum instantaneous transverse coefficient exceeds the limitation 4π.  相似文献   

2.
Flow separation behind two-dimensional ellipses with aspect ratios ranging from 0, a flat plate, to 1, a circular cylinder, were investigated for Reynolds numbers less than 10 using both a cellular automata model and a commercial computational fluid dynamics software program. The relationship between the critical aspect ratio for flow separation and Reynolds number was determined to be linear for Reynolds numbers greater than one. At slower velocities, the critical aspect ratio decreases more quickly as the Reynolds number approaches zero. The critical Reynolds numbers estimated for flow separation behind a flat plate and circular cylinder agree with extrapolations from experimental observations. Fluctuations in the values of the stream function for laminar flow behind the ellipses were found at combinations of Reynolds number and aspect ratio near the critical values for separation.  相似文献   

3.
Numerical solutions for the stream function, vorticity, velocity, and pressure fields are presented for the case of a steady, laminar, isothermal, Newtonian flow developing from an initial slug flow in a circular cylinder of infinite length at zero Reynolds number.  相似文献   

4.
The direct boundary element method is applied to the numerical modelling of thermal fluid flow in a transient state. The Navier-Stokes equations are considered under the Boussinesq approximation and the viscous thermal flow equations are expressed in terms of stream function, vorticity, and temperature in two dimensions. Boundary integral equations are derived using logarithmic potential and time-dependent heat potential as fundamental solutions. Boundary unknowns are discretized by linear boundary elements and flow domains are divided into a series of triangular cells. Charged points are translated upstream in the numerical evaluation of convective terms. Unknown stream function, vorticity, and temperature are staggered in the computational scheme.

Simple iteration is found to converge to the quasi steady-state flow. Boundary solutions for two-dimensional examples at a Reynolds number 100 and Grashoff number 107 are obtained.  相似文献   


5.
A general method of solving Oseen's linearized equations fortwo-dimensional steady flow of a viscous incompressible fluidpast a cylinder in an unbounded field is developed. The analysisis developed in terms of the scalar vorticity and stream functionand it is shown that the vorticity for Oseen flow problems canbe obtained separately from the stream function. The determinationof the vorticity can be effected using conditions of an integralcharacter deduced from the no-slip condition at the cylindersurface together with the conditions at large distances. Theindependent determination of the vorticity seems to be a newstep in Oseen theory. The method enables one to obtain manyproperties of the flow in terms ofthe Reynolds number by usingonly the vorticity without the necessity of finding the streamfunction. The use of integral conditions makes the detailedcalculations straightforward, systematic, and elementary. Themethod is tested by applying it to the case of uniform flowpast an elliptic cylinder at an arbitrary angle of incidenceand also to cases of symmetrical and asymmetrical flows pastcircular cylinders. The leading approximation for small Reynoldsnumber is obtained where possible. In the case of flow pasta rotating cylinder, the only possible solution is the Oseensolution for the nonrotating case with the addition of a potentialvortex.  相似文献   

6.
We study a coupled algorithm for solving the two-dimensional Navier–Stokes equations in the stream function–vorticity variables. The algorithm is based on a finite-difference scheme in which the inertial terms in the vortex transport equation are taken from the lower time layer and the dissipative terms, from the upper time layer. In the linear approximation, we study the stability of this algorithm and use test computations to show its advantages when modeling flows at moderate Reynolds numbers.  相似文献   

7.
The problem of a particle impacting on a wall, a common phenomenon in particle-laden flows in the minerals and process industries, is investigated computationally using a spectral-element method with the grid adjusting to the movement of the particle towards the wall. Remeshing is required at regular intervals to avoid problems associated with mesh distortion and the constantly reducing maximum time-step associated with integration of the non-linear convective terms of the Navier–Stokes equations. Accurate interpolation between meshes is achieved using the same high-order interpolation employed by the spectral-element flow solver. This approach allows the full flow evolution to be followed from the initial approach, through impact and afterwards as the flow relaxes. The method is applied to the generic two-dimensional and three-dimensional bluff body geometries, the circular cylinder and the sphere. The principal case reported here is that of a particle colliding normally with a wall and sticking. For the circular cylinder, non-normal collisions are also considered. The impacts are studied for moderate Reynolds numbers up to approximately 1200. A cylindrical body impacting on a wall produces two vortices from its wake that convect away from the cylinder along the wall before stalling while lifting induced wall vorticity into the main flow. The situation for a sphere impact is similar, except in this case a vortex ring is formed from the wake vorticity. Again, secondary vorticity from the wall and particle plays a role. At higher Reynolds number, the secondary vorticity tends to form a semi-annular structure encircling the primary vortex core. At even higher Reynolds numbers, the secondary annular structure fragments into semi-discrete structures, which again encircle and orbit the primary core. Vorticity fields and passive tracer particles are used to characterize the interaction of the vortical structures. The evolution of the pressure and viscous drag coefficients during a collision are provided for a typical sphere impact. For a Reynolds number greater than approximately 1000 for a sphere and 400 for a cylinder, the primary vortex core produced by the impacting body undergoes a short-wavelength instability in the azimuthal/spanwise direction. Experimental visualisation using dye carried out in water is presented to validate the predictions.  相似文献   

8.
This is a theory of two‐dimensional steady periodic surface waves on flows under gravity in which the given data are three quantities that are independent of time in the corresponding evolution problem: the volume of fluid per period, the circulation per period on the free stream line, and the rearrangement class (equivalently, the distribution function) of the vorticity field. A minimizer of the total energy per period among flows satisfying these three constraints is shown to be a weak solution of the surface wave problem for which the vorticity is a decreasing function of the stream function. This decreasing function can be thought of as an infinite‐dimensional Lagrange multiplier corresponding to the vorticity rearrangement class being specified in the minimization problem. (Note that functional dependence of vorticity on the stream function was not specified a priori but is part of the solution to the problem and ensures the flow is steady.) To illustrate the idea with a minimum of technical difficulties, the existence of nontrivial waves on the surface of a fluid flowing with a prescribed distribution of vorticity and confined beneath an elastic sheet is proved. The theory applies equally to irrotational flows and to flows with locally square‐integrable vorticity. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
武云海 《计算数学》1992,14(3):299-305
本文把区域分裂法与涡点格法相结合,以此构造一类并行算法,数值模拟不定常圆柱绕流在高Reynolds数情况下的初期流动. §1.基本问题 假设有一个半径为a的圆柱体,在静止的不可压粘性流体中,以速度U突然起动,此流动满足二维不定常Navier-Stokes无量纲化方程:  相似文献   

10.
The steady viscous incompressible and slightly conducting fluid flow around a circular cylinder with an aligned magnetic field is simulated for the range of Reynolds numbers 100 ? Re ? 500 using the Hartmann number, M. The multigrid method with defect correction technique is used to achieve the second order accurate solution of complete non-linear Navier–Stokes equations. The magnetic Reynolds number is assumed to be small. It is observed that volume of the separation bubble decreases and drag coefficient increases as M is increased. We noticed that the upstream base pressure increases slightly with increase of M whereas downstream base pressure decreases with increase of M. The effect of the magnetic field on the flow is discussed with contours of streamlines, vorticity, plots of surface pressure and surface vorticity.  相似文献   

11.
The influence of buoyancy onto the boundary‐layer flow past a horizontal plate aligned parallel to a uniform free stream is characterized by the buoyancy parameter K = Gr/Re5/2 where Gr and Re are the Grashof and Reynolds number, respectively. An asymptotiy analysis of the complete flow field including potential flow, boundary layer, wake and interaction region is given for small buoyancy parameters and large Reynolds numbers in the distinguished limit KRe1/4 = O(1). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
This article describes the computation of pipe flow in the entrance region. The pressure distribution and flow characteristics, particularly the effect of vorticity in the vicinity of the wall, were analyzed for moderate Reynolds numbers (Re) ranging from 500 to 10,000. It was found, for the first time, that a large pressure gradient in the radial direction exists near the pipe inlet. The pressure gradient is caused by the radial component of the curl of vorticity, which decreases as Re increases. The pressure at the wall is lower than that at the central core for Re ≤ 5000. This result is beyond the scope of the boundary-layer assumption for pressure, although it applies to flows at high Reynolds numbers.  相似文献   

13.
A new high-order accurate method and a corresponding computer program developed previously by the first and third authors for the numerical solution of the axisymmetric stationary Dirichlet boundary value problem for the Navier-Stokes equations in spherical layers at low Reynolds numbers were used to reliably study the structure of certain flows with a stream function in a meridional plane having multiple local extrema in its positive-sign domains. Regimes of rotation of the boundary spheres were detected that ensure this flow pattern: the inner sphere rotates at a constant angular velocity, while the outer sphere rotates at zenith-angle-dependent angular velocities. To describe the structure of these flows, the domain where the stream function is positive was partitioned into subdomains (circulation zones) by the separatrices of the saddle points of the stream function, which generate manifolds of unstable initial points of trajectories. Unexpected phenomena in the circulation of such flows were discovered. Examples were presented that illustrate the behavior of fluid particle trajectories. The computed trajectories were shown to be of high accuracy even on long time intervals.  相似文献   

14.
An immersed boundary (IB)-lattice Boltzmann method (LBM) combined with a robust lattice spring model (LSM) was developed for modeling fluid–elastic body interactions. To include the effects of viscous flow forces on the deformation of a flexible body, rotational invariant springs were connected regularly inside the deformable body with square lattices. Fluid–solid interactions were due to an additional force density in the lattice Boltzmann equation enhanced by the split-forcing approach. To check the validity and accuracy of the numerical method, the flow over a rigid plate and the deformation of a cantilever beam were investigated. To demonstrate the capability of the new method, different test cases were examined. The deformation of a two-dimensional flexible vertical plate in a laminar cross-flow stream at different conditions was analyzed. The simulations were performed for different boundary conditions imposed on the elastic plate, namely, fixed-end corners and fixed middle point. Different flow conditions such as “steady flow regime”, “vortex shedding flow regime”, and the limit of “rigid body motion” were examined using the new IB-LBM-LSM approach. A general formulation for evaluating the deformation of the elastic body was also introduced, in which the position of the LSM nodes (inside the body) was updated implicitly at each time step. Two dimensionless groups, namely capillary number (Ca) and Reynolds number (Re), were used for parametric study of the behavior of the flow around the deformable plate. It was found that for low Reynolds numbers (Re < 50) and when the middle of the plate was fixed, decreasing the capillary number led to a decrease in the drag coefficient. The fluctuation of the plate during the vortex shedding flow regime was also explored. It was found that when the middle of the plate was fixed, the critical Reynolds number for the initiation of vortex shedding increased. For Re > 100, the Strouhal number was observed to increase with the decrease in capillary number.  相似文献   

15.
Simulation results are reported for plane two-dimensional viscous incompressible flow in a channel with an abrupt expansion. The mathematical model is provided by the quasi-hydrodynamic equations in the incompressible fluid approximation. The computations are carried out in a range of Reynolds numbers including both laminar and turbulent flow. As the Reynolds number increases, the solution bifurcates and the steady laminar flow changes to time-dependent flow. The computation results are consistent with known experimental data. Turbulence models were not used for large Reynolds number computations.  相似文献   

16.
A mathematical model has been developed to describe the force of liquid flow acting on a colloidal spherical particle as it approaches a solid surface at intermediate-Reynolds-number-flow regime. The model has incorporated bispherical coordinates to determine a stream function for the flow disturbed by the sphere. The stream function was then used to derive the flow force on the particle as a function of the inter-surface separation distance. The force equation was related to the modified Stokes equation to obtain an exact analytical expression for the correction factor to the Stokes law. Finally, a rational approximation is presented, which is in good agreement with the exact numerical result, and can be readily applied to more general particle–surface interactions involving short-range hydrodynamics associated with colloidal particles in the near vicinity of a large solid collector surface at intermediate Reynolds number of the supporting flow.  相似文献   

17.
The purpose of this article is to use the method of matched asymptotic expansions (MMAE) in order to study the two-dimensional steady low Reynolds number flow of a viscous incompressible fluid past a porous circular cylinder. We assume that the flow inside the porous body is described by the continuity and Brinkman equations, and the velocity and boundary traction fields are continuous across the interface between the fluid and porous media. Formal expansions for the corresponding stream functions are used. We show that the force exerted by the exterior flow on the porous cylinder admits an asymptotic expansion with respect to low Reynolds numbers, whose terms depend on the characteristics of the porous cylinder. In addition, by considering Darcy's law for the flow inside the porous circular cylinder, an asymptotic formula for the force on the cylinder is obtained. Also, a porous circular cylinder with a rigid core inside is considered with Brinkman equation inside the porous region. Stress jump condition is used at the porous–liquid interface together with the continuity of velocity components and continuity of normal stress. Some particular cases, which refer to the low Reynolds number flow past a solid circular cylinder, have also been investigated.  相似文献   

18.
An incompressible boundary layer on a compliant plate is considered. The influence exerted by the tensile stress and bending stiffness of the plate on the stability of the boundary layer is investigated in the limit of high Reynolds numbers on the basis of the triple-deck theory. It is shown that upstream-propagating growing waves can be generated in a certain range of parameters characterizing the plate properties. As a result, the flow becomes absolutely unstable in the conventional sense.  相似文献   

19.
This paper studies the two-dimensional incompressible viscous flow in which the local vorticity is proportional to the stream function perturbed by a uniform stream. It was known by Taylor and Kovasznay that the Navier-Stokes equations for flow of this kind become linear. From the general solution to the linear equations for steady flow, we show that there exist only two types of steady flow of this kind: Kovasznay downstream flow of a two-dimensional grid and Lin and Tobak reversed flow about a flat plate with suction. In the unsteady flow case, new classes of exact analytical solutions are found which include Taylor vortex array solution as a special case. It is shown that these unsteady flows are, as viewed from a frame of reference moving with the undisturbed uniform stream, pseudo-steady in the sense that the flow pattern is steady but the magnitude of motion decays, or grows, exponentially in time. All these solutions are valid for any Reynolds number.
Résumé Dans ce travail nous étudions l'écoulement plan d'un fluide visqueux incompressible dans lequel la rotation locale est proportioneile à la fonction de courant perturbée par un courant uniforme. Conformément aux travaux de Taylor et Kovasznay les équations de Navier-Stokes pour cet écoulement deviennent linéaires. Par conséquent nous utilisons la solution générale pour démontrer que seulement deux catégories d'écoulement stationnaire peuvent exister: l'écoulement de Kovasznay en aval d'une grille plane, et l'écoulement inversé de Lin et Tobak pour une plaque plane avec aspiration. Nous étudions aussi l'écoulement non stationnaire et nous découvrons des classes nouvelles de solutions exactes qui contiennent, en particulier, le réseau de tourbillons de Taylor. Enfin nous démontrons que ces écoulements sont pseudo-stationnaires dans un système de coordonnées en mouvement avec le courant uniforme non perturbé; ce qui signifie que l'amplitude de l'écoulement stationnaire croit ou décroit exponentiellment dans le temps. Toutes ces solutions sont valides pour tous les nombres de Reynolds.


On leave from University of Waterloo, Ontario, Canada.  相似文献   

20.
We consider the possibility of intense mixing of a viscous fluid in the gap between two quasiconcentric cylinders, with one of the cylinders performing high-frequency vibrations about its axis. The motion of the fluid is described by Navier-Stokes equations for the axisymmetric case. The stream function is represented by a generalized Fourier series. The small parameter is the ratio of the vibration amplitude to the radius of the external cylinder. Calculations carried out in the zeroth approximation produced the pattern of stream lines for various Reynolds numbers, vibration amplitudes, and ratios of external and internal radii. The mixing intensity was found to increase substantially with the reduction of the gap between the cylinders, whereas variation of the ratio of the vibration amplitude to the Reynolds number did not produce marked qualitative changes. The fluid flow in this system generates a contraction semigroup, which makes it possible to derive the ergodicity criterion for the stream function.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 59, pp. 35–39, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号