首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
核磁自旋回波串的液体分量分解快速反演法(英文)   总被引:1,自引:1,他引:0  
该文叙述核磁自旋回波串的液体分量分解快速反演法.此方法假定液体,无论是在散装形式或饱和多孔介质中,可以用一个或一组核磁弛豫线形来表征.对一维核磁共振的拉普拉斯反演,它可以是预先确定的一个或一组T2或T1分布.对二维核磁共振的拉普拉斯反演,它可以是一个或一组预先确定的( D, T2)或( T1, T2)二维分布.对三维核磁共振的拉普拉斯反演,它可以是一个或一组预先设定的( D, T1, T2)三维分布.这些预先确定的线形,可以是高斯、B样条或预先由实验或经验确定的任何线形.这种方法可以显着降低核磁共振数据反演的计算时间,特别是从石油核磁共振测井采集的多维数据反演,它不需牺牲反演所得的分布的平滑性和准确性.这种方法的另一个新应用是作为一种约束求解方法来过滤相邻深度所采集的数据噪音.核磁共振测井的噪音信号,往往造成在相邻深度的同一岩性岩层有不同的T2分布.在此情况下, T2分布就不能用来识别岩性.通过非一般的矩阵操作,作者成功实现了对相邻深度的回波串实施约束求解方法,从而使得T2分布成为一种可靠的岩性识别指标.  相似文献   

2.
An NMR method is presented for measuring compartment-specific water diffusion coefficient (D) values. It uses relaxography, employing an extracellular contrast reagent (CR) to distinguish intracellular (IC) and extracellular (EC) (1)H(2)O signals by differences in their respective longitudinal (T(1)) relaxation times. A diffusion-weighted inversion-recovery spin-echo (DW-IRSE) pulse sequence was used to acquire IR data sets with systematically and independently varying inversion time (TI) and diffusion-attenuation gradient amplitude (g) values. Implementation of the DW-IRSE technique was demonstrated and validated using yeast cells suspended in 3 mM Gd-DTPA(2-) with a wet/dry mass ratio of 3.25:1.0. Two-dimensional (2D) NMR data were acquired at 2.0 T and analyzed using numerical inverse Laplace transformation (2D- and sequential 1D-ILT) and sequential exponential fitting to yield T(1) and water D values. All three methods gave substantial agreement. Exponential fitting, deemed the most accurate and time efficient, yielded T(1):D (relative contribution) values of 304 ms:0.023x10(-5) cm(2)/s (47%) and 65 ms:1.24x10(-5) cm(2)/s (53%) for the IC and EC components, respectively. The compartment-specific D values derived from direct biexponential fitting of diffusion-attenuation data were also in good agreement. Extension of the DW-IRSE method to in vivo models should provide valuable insights into compartment-specific water D changes in response to injury or disease. (c) 2002 Elsevier Science (USA).  相似文献   

3.
2D NMR技术在石油测井中的应用   总被引:3,自引:1,他引:2  
近几年,2D NMR技术得到迅速发展,特别是在核磁共振测井领域. 该文将主要介绍2D NMR技术的脉冲序列、弛豫原理以及2D NMR技术在石油测井中应用. 2D NMR技术是在梯度场的作用下,利用一系列回波时间间隔不同的CPMG脉冲进行测量,利用二维的数学反演得到2D NMR. 2D NMR技术可以直接测量自扩散系数、弛豫时间、原油粘度、含油饱和度、可动水饱和度、孔隙度、渗透率等地层流体性质和岩石物性参数. 从2D NMR谱上,可以直观的区分油、气、水,判断储层润湿性,确定内部磁场梯度等. 2D NMR技术为识别流体类型提供了新方法.  相似文献   

4.
润湿性是反映储层中油水分布状况的一个重要表征参数,因此研究储层岩石的润湿性对原油开采有着重要的意义. 扩散弛豫二维谱可展示扩散系数与弛豫时间的相关性,并可以对油水的弛豫时间、扩散系数分别进行研究,与核磁共振一维弛豫谱相比极大地提高了区分油水的能力. 该文首先通过多组实验验证扩散-弛豫二维谱可以很好地观测到油水共存状态下玻璃珠表面的润湿性,继而通过对3组人造岩心表面润湿性的测量,获得了人造岩心表面润湿性的信息,解决了此时单独用一维弛豫谱方法难以区分油水的问题. 利用二维谱观察岩石润湿性的研究对油田提高采收率的研究有较大的参考价值.  相似文献   

5.
Biexponential T(2) relaxation of the localized water signal can be used for segmentation of spectroscopic volumes. To assess the specificity of the components an iterative relaxation measurement of the localized water signal (STEAM, 12 echo times, geometric spacing from 30 ms to 2000 ms) was combined with magnetization transfer (MT) saturation (40 single lobe pulses, 12 ms duration, 1440 degrees nominal flip angle, 1 kHz offset, repeated every 30 ms). Voxels including CSF were examined in parietal cortex and periventricular parietal white matter (10 each), as well as 13 voxels in central white matter and 16 T(1)-hypointense non-enhancing multiple sclerosis lesions without CSF inclusion. Biexponential models (excluding myelin water) were fitted to the relaxation data. In periventricular VOIs the component of long T(2) (1736 +/- 168 ms) that is attributed to CSF was not affected by MT. In cortical VOIs this component had markedly shorter T(2)'s (961 +/- 239 ms) and showed both attenuation and prolongation with MT, indicating contributions from tissue. MS lesions and central WM showed a second tissue component of intermediate T(2) (160-410 ms). In white matter similar MT attenuation indicated strong exchange between the two tissue components, prohibiting segmentation. In MS lesions, however, markedly less MT of the intermediate component was found, which is consistent with decreased cellularity and exchange in a region that is large compared to diffusion motion.  相似文献   

6.
In situ fluid typing and quantification with 1D and 2D NMR logging   总被引:1,自引:0,他引:1  
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.  相似文献   

7.
A global inversion method for multi-dimensional NMR logging   总被引:4,自引:0,他引:4  
We describe a general global inversion methodology of multi-dimensional NMR logging for pore fluid typing and quantification in petroleum exploration. Although higher dimensions are theoretically possible, for practical reasons, we limit our discussion of proton density distributions as a function of two (2D) or three (3D) independent variables. The 2D can be diffusion coefficient and T(2) relaxation time (D-T(2)), and the 3D can be diffusion coefficient, T(2), and T(1) relaxation times (D-T(2)-T(1)) of the saturating fluids in rocks. Using the contrast between the diffusion coefficients of fluids (oil and water), the oil and water phases within the rocks can be clearly identified. This 2D or 3D proton density distribution function can be obtained from either two-window or regular type multiple CPMG echo trains encoded with diffusion, T(1), and T(2) relaxation by varying echo spacing and wait time. From this 2D/3D proton density distribution function, not only the saturations of water and oil can be determined, the viscosity of the oil and the gas-oil ratio can also be estimated based on a previously experimentally determined D-T(2) relationship.  相似文献   

8.
PurposeThis study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content.MethodsPhantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5 T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20 ms for echo train signal modulation (6.7, 13.6, 26.8, and 40 ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated.ResultsAgreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI.ConclusionThe sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content.  相似文献   

9.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques.  相似文献   

10.
We present updated measurements of CP-violating asymmetries in the decays B0-->D*(+/-)D(-/+) and B0-->D+D- using (383+/-4) x 10(6)B(B) pairs collected by the BABAR detector at the SLAC PEP-II B factory. We determine the time-integrated CP asymmetry A(D*(+/-)D(-/+))=0.12+/-0.06+/-0.02, and the time-dependent asymmetry parameters to be C(D*+D-)=0.18+/-0.15+/-0.04, S(D*+D-)=-0.79+/-0.21+/-0.06, C(D*-D+)=0.23+/-0.15+/-0.04, S(D*-D+)=-0.44+/-0.22+/-0.06, C(D+D-)=0.11+/-0.22+/-0.07, and S(D+D-)=-0.54+/-0.34+/-0.06, where the first uncertainty is statistical and the second is systematic.  相似文献   

11.
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-mum average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time T(E)=40 ms, and 6-10% in consolidated porous media for T(E)=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm(3) and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed.  相似文献   

12.
A 48-echo pulse sequence with five different echo-spacing combinations was examined to determine how one can most effectively measure the T2 relaxation characteristics of cerebral tissue containing a long T2 component. For each scan, the first 32 echoes had an echo spacing of 10 ms, while the spacing for Echoes 33-48 (DeltaTE2) was 10, 20, 30, 40 or 50 ms. In an in vivo study using 10 normal volunteers, it was found that the resolution of T2 distribution peaks for both myelin water (approximately 20 ms) and intracellular/extracellular (IE) water (approximately 80 ms) improved as DeltaTE2 increased. The geometric mean T2 values of the main peak agreed within the error for all DeltaTE2 values. A phantom study simulated T2 relaxation distributions that are expected in the brains of patients with demyelinating diseases. For phantoms in which the T2 values of the IE and lesion (200-500 ms) water compartments were separated by at least a factor of 3, each compartment in the distribution was better resolved when DeltaTE2=40 or 50 ms. On the basis of these results, we recommend the use of extended DeltaTE2 values for imaging patients with lesions, without the risk of losing valuable short T2 information.  相似文献   

13.
Two-dimensional (2D) nuclear magnetic resonance (NMR) methods for the investigation of correlation and exchange have been introduced in recent years and have been applied to a range of different systems. Here, we report on the use of 2D NMR diffusion-diffusion correlation spectroscopy for the investigation of diffusion anisotropy in cellular plant tissues and of diffusion-diffusion exchange spectroscopy for the study of the diffusive exchange of dextran in a dispersion of polyelectrolyte multilayer hollow capsules. Furthermore, diffusion-relaxation correlation spectroscopy was applied to both systems.  相似文献   

14.
The (1)H NMR water signal from spectroscopic voxels localized in gray matter contains contributions from tissue and cerebral spinal fluid (CSF). A typically weak CSF signal at short echo times makes separating the tissue and CSF spin-lattice relaxation times (T(1)) difficult, often yielding poor precision in a bi-exponential relaxation model. Simulations show that reducing the variables in the T(1) model by using known signal intensity values significantly improves the precision of the T(1) measurement. The method was validated on studies on eight healthy subjects (four males and four females, mean age 21 +/- 2 years) through a total of twenty-four spectroscopic relaxation studies. Each study included both T(1) and spin-spin relaxation (T(2)) experiments. All volumes were localized along the Sylvian fissure using a stimulated echo localization technique with a mixing time of 10 ms. The T(2) experiment consisted of 16 stimulated echo acquisitions ranging from a minimum echo time (TE) of 20 ms to a maximum of 1000 ms, with a repetition time of 12 s. All T(1) experiments consisted of 16 stimulated echo acquisition, using a homospoil saturation recovery technique with a minimum recovery time of 50 ms and a maximum 12 s. The results of the T(2) measurements provided the signal intensity values used in the bi-exponential T(1) model. The mean T(1) values when the signal intensities were constrained by the T(2) results were 1055.4 ms +/- 7.4% for tissue and 5393.5 ms +/- 59% for CSF. When the signal intensities remained free variables in the model, the mean T(1) values were 1085 ms +/- 19.4% and 5038.8 ms +/- 113.0% for tissue and CSF, respectively. The resulting improvement in precision allows the water tissue T(1) value to be included in the spectroscopic characterization of brain tissue.  相似文献   

15.
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.  相似文献   

16.
The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.  相似文献   

17.
A better knowledge of the NMR relaxation behavior of bone tissue can improve the definition of imaging protocols to detect bone diseases like osteoporosis. The six rat lumbar vertebrae, from L1 to L6, were analyzed by means of both transverse (T(2)) and longitudinal (T(1)) relaxation of (1)H nuclei at 20 MHz and 30 degrees C. Distributions of relaxation times, computed using the multiexponential inversion software uniform penalty inversion, extend over decades for both T(2) and T(1) relaxation. In all samples, the free induction decay (FID) from an inversion-recovery (IR) T(1) measurement shows an approximately Gaussian (solid-like) component, exp[-1/2(t/T(GC))2], with T(GC) approximately 12 micros (GC for Gaussian component) and a liquid-like component (LLC) with initially simple-exponential decay. Averaging and smoothing procedures are adopted to obtain the ratio alpha between GC and LLC signals and to get separate T(1) distributions for GC and LLC. Distributions of T(1) for LLC show peaks centered at 300-500 ms and shoulders going down to 10 ms, whereas distributions of T(1) for GC are single broad peaks centered at roughly 100 ms. The T(2) distributions by Carr-Purcell-Meiboom-Gill at 600 micros echo spacing are very broad and extend from 1 ms to hundreds of ms. This long echo spacing does not allow one to see a peak in the region of hundreds of micros, which is better seen by single spin-echo T(2) measurements. Results of the relaxation analysis were then compared with densitometric data. From the study, a clear picture of the intratrabecular and intertrabecular (1)H signals emerges. In particular, the GC is presumed to be due to (1)H in collagen, LLC due to all the fluids in the bone including water and fat, and the very short T(2) peak due to the intratrabecular water. Overall, indications of some trends in composition and in pore-space distributions going from L1 to L6 appeared. Published results on rat vertebrae obtained by fitting the curves by discrete two-component models for both T(2) and T(1) are consistent with our results and can be better interpreted in light of the shown distributions of relaxation times.  相似文献   

18.
岩心水驱油过程中油水分布状况是岩心多孔介质的重要性质. 水驱油过程的研究是进一步进行提高采收率研究的基础. 核磁共振扩散-弛豫二维谱提供了岩心中流体性质的多方面信息,与核磁共振一维弛豫谱相比极大地提高了区分油水的能力. 该文通过2组岩心水驱油实验,从不同含油饱和度的扩散-弛豫二维谱中提取出水的一维弛豫谱,在原油粘度比较高的情况下获得了驱替过程中油水在不同孔隙中的分布状况以及润湿性等信息, 解决了单独用一维弛豫谱方法难以区分油水的问题. 该文的研究方法对油田提高采收率的研究有比较大的参考价值.  相似文献   

19.
The aim of this study was to investigate the utility of the water T(2) values of malignant breast lesions in predicting response after the first and second cycles of neoadjuvant chemotherapy (NAC), both alone and in combination with lesion volumes. Thirty-five patients were scanned before the commencement of chemotherapy and again after the first, second and final treatment cycles. Two methods of obtaining lesion T(2) were used: imaging, where a series of T(2)-weighted images was acquired (T(R)/T(E)=1000/30, 60, 90 and 120 ms), and spectroscopy, where the T(2) value of unsuppressed water signal was determined with a multiecho sequence (T(R)=1.5 s; initial T(E)=35 ms; 64 steps of 2.5 ms; 2 unsuppressed acquisitions per T(E)). Lesion volumes were computed from contrast-enhanced 3D fat-suppressed images. The study found that, using the imaging method of obtaining T(2), the ratio of the product of lesion T(2) and volume after the second cycle of NAC to pretreatment value is a good predictor of ultimate lesion response, defined as a > or =65% reduction in tumor volume after the final treatment cycle, with positive and negative predictive values of 95.5% and 84.6%, respectively.  相似文献   

20.
The spin echo decay curve of NMR protons in in-vitro rat muscle is two or three exponential as Hazlewood demonstrated in 1974. This author hypothesized that the longer T2 component is extracellular water and that the medium T2 is intracellular water. Our purpose was to test the histological significance of these two T2. Variations of water contents in two types of rat muscles were induced by electrical stimulation and osmotic diuresis and their incidence on the decomposition of the proton spin echo signal analysed. Decomposition of signal in resting muscles revealed two phases with T2 values similar to the Hazlewood's: a short phase, S, with T2 of 40 ms (20 MHz, 276 degrees K) representing 90-97% of the total signal and a long one, L, with T2 of 100-120 ms representing 3-10% of the signal. Increasing vascular volume appeared to increase the percentage of phase (L) in the total signal. Osmotic diuresis decreased the volume of the phase (S) and increased the volume of the phase (L). The use of Gd-DTPA allowed to differentiate the vascular compartment: Gd DTPA decreased in a great extent the T2 values of phase (L) and in low extent the T2 values of phases (S). From these results, it appears that phase (L) could correspond to vascular volume and that phase (S) would be interstitial and intracellular water. Elements of comparison with classical methods for determination of water compartmentation in tissues are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号