首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The D + H2(ν = 1) reaction, D + H2(ν = 1) → Ka HD(ν = 1) + H, → Kn HD(ν = 0) + H, → Kr D + H2(ν = 0) has been studied. The measurements were made in a flow-tube apparatus at 300 K. Vibrationally excited H2 was generated in a furnace and D atoms in a microwave discharge. EPR and thermometric techniques were used for the detection of D and H atoms and H2(ν = 1). The product branching rate constants (in CM3/Molecule s) were found to be Ka = (10.7 ± 4.1) × 10?13. Kn = (5.4 ± 2.7) × 10?13, Kr, < 2.7 × 10?13.  相似文献   

2.
Intramolecular vibration—vibration energy transfer cross sections have been calculated for CO2(0001) + H2/D2 → CO2(1110) + H2/D2, → CO2(1000) + H2/D2, and → CO2(2000) + H2/D2 based on the mechanism that the energy mismatch is transferred to the translational motion. For CO2 + H2, the calculated cross section for CO2(0001) + H2 → CO2(1000) + H2 is in good agreement with experimental data. Cross sections for the processes (0001 → 111O) and (0001 → 2000) are found to be too small compared with experimental data. For CO2 + D2, (0001 → 1000) is also the most important process and appears to represent experimental data at room temperature. The sum of three cross sections of CO2 + H2 is always greater than that of CO2 + D2 over the temperature range of 100–2500 K.  相似文献   

3.
The vibration-vibration energy transfer in the near-resonant collision HF(υ = 1) + H2O(000) → HF(υ = 0) + H2O(001) + ΔE = 205 cm?1 has been investigated on the basis of the model of the nonrigid H2O-HF dimer formation for temperatures not greatly higher than room temperature. The energy mismatch ΔE is considered to be removed by the slow translational motion of two molecules in the complex about their equilibrium separation. A strong negative temperature dependence of the energy exchange rate is shown between 300 and 500 K.  相似文献   

4.
The kinetics of the reaction NH2 + NO → N2 + H2O were studied, using a conventional flash photolysis system. A value of k1 = (1.1 ± 0.2) × 1010 & mole?1 s?1 was obtained at room temperature and in the pressure range 2–700 torr in the presence of nitrogen. A slight negative temperature coefficient was observed between 300 and 500 K, equivalent to a negative activation energy of 1.05 ± 0.2 kcal mole?1.  相似文献   

5.
A new mechanism Of H2 dissociation in electrical discharges (1011 ? ne ? 1012 cm?3, 2.10?16 ? E/N ? 3.10?16 V cm2, 300 ? Tg ? 1000 K, 3 ? p ? 30 torr) is presented and discussed. In this mechanism, called joint vibro-electronic mechanism (JVE), the electrons of the discharge create a strong vibrational disequilibrium with respect to the gas temperature (Tg) and promote electronic transitions from all vibrational levels of 1Σg H2 state to the repulsive 3Σu one. Moreover the V-V (vibration-vibration) and V-T (vibration-translation) energy exchanges are considered for building up the vibrational distribution of 1Σg state. A complete set of e - D cross sections (e + H2(1Σg,ν) → e + H2 (3Σu) → + 2H, ν = 0,14) is calculated by using an extension of the semiclassical Gryzinski theory in combination with the Franck-Condon principle. Dissociation rates calculated according to JVE are larger either than those obtained by the pure vibrational mechanism (PVM) discussed in our previous work or than those from the direct electronic impact mechanism (DEM) from the ground vibrational level. The behaviour of JVE rates as a function of gas temperature (Tg), of E/N, of electron density (ne) and of pressure is then reported. The results show strong differences as compared, with the corresponding values obtained, with PVM. Finally the influence of the atoms as well as their recombination on the dissociation rates is discussed. The results have been obtained by solving a system of vibrational master equations.  相似文献   

6.
The kinetics and mechanism for the reaction of NH2 with HONO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The reaction producing the primary products, NH3 + NO2, takes place via precomplexes, H2N???c‐HONO or H2N???t‐HONO with binding energies, 5.0 or 5.9 kcal/mol, respectively. The rate constants for the major reaction channels in the temperature range of 300–3000 K are predicted by variational transition state theory or Rice–Ramsperger–Kassel–Marcus theory depending on the mechanism involved. The total rate constant can be represented by ktotal = 1.69 × 10?20 × T2.34 exp(1612/T) cm3 molecule?1 s?1 at T = 300–650 K and 8.04 × 10?22 × T3.36 exp(2303/T) cm3 molecule?1 s?1 at T = 650–3000 K. The branching ratios of the major channels are predicted: k1 + k3 producing NH3 + NO2 accounts for 1.00–0.98 in the temperature range 300–3000 K and k2 producing OH + H2NNO accounts for 0.02 at T > 2500 K. The predicted rate constant for the reverse reaction, NH3 + NO2 → NH2 + HONO represented by 8.00 × 10?26 × T4.25 exp(?11,560/T) cm3 molecule?1 s?1, is in good agreement with the experimental data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 678–688, 2009  相似文献   

7.
Spectra emitted from 0.1% CO-N2 solids excited with high energy electrons at 4 K show evidence for resonant transfer of vibrational energy from highly excited vibrational levels of N2 to CO in the process N2(X1Σg+, ν) + CO(ν = 0) → N2(X1Σg+, ν - 1) + CO(ν = 1) + phonons. Energy transfer from levels with ν ? 9 has been observed.  相似文献   

8.
Energy stored in vibrational level ν = 1 of several individual dipolar diatomic molecules AB which are trapped in a rare gas matrix M is automatically accumulated in a higher level ν > 1 of a single molecule AB. This remarkable cascade of energy upwards competes with a cascade of energy downwards. the radiative decay. The interplay of both cascades, first observed by Dubost and Charneau, is explained a simple model. The model incorporates three processes into a master equation for the relative populations Pν(t) of levels ν: (a) migration of single quanta by resonance energy transfer, AB(1) + AB(0) ? AB(0) + AB(1); (b) phonon assisted excitation of upper levels, AB(1) + AB(ν) → AB(0) + AB(ν+1); and (c) radiative decay, AB(ν) → AB(ν-1). The model assumes that there is only one isotopic species AB which has a small but nonzero vibrational anharmonicity, that the temperature is low, T → 0 K, the concentration ratio ?M/?AB is large and that, initially, at time t = 0, a small fraction p1 of molecules AB is excited to level ν = 1. The master equation has only two parameters, the radiative lifetime trad and k  2/[?AB?1k(1,1 → 0,2)trad], where k(1,1 → 0,2) is the reference rate constant of process (b). The master equation is solved in closed form for the Pν(t). For trad = 14 ms and k = 0.2, very satisfactory qualitative agreement is found for the theoretical Pν(t) and the experimental time evolution of the relative population of vibrational levels of 12C16O in an argon matrix, for ?M/?AB = 2000 at T = 9 K. In agreement with experimental results it is concluded that the risetime of the fluorescence signals decreases whereas population inversion increases for decreasing values of ?M/?AB. At long times, t > trad, any population inversion should disappear.  相似文献   

9.
The reaction Ar(2P2,0) + H2O → Ar + H + OH(A2Σ+)was studied in crossed molecular beams by observing the luminescence from OH(A2Σ+). No significant dependence of the spectrum on collision energy was found over the 22–52 meV region. Spectral simulation was used to obtain the OH(A) vibrational distribution and rotational temperature, assuming a Boltzmann rotational distribution. Since predissociation is known to strongly affect the rovibrational distribution, the individual rotational state lifetimes were included in the simulation program and were used to obtain the average vibrational state lifetimes. Excellent agreement with experiment was obtained for vibrational population ratios N0/N1/N2 of 1.00/ 0.40/0.013 and a rotational temperature of 4000 K. Correction for the different average vibrational lifetimes gave formation rate ratios P0/P1/P2 of 1.00/0.49/0.25. The differences between these results and those from flowing afterglow studies on the same system are discussed. Three reaction mechanisms are considered, and the vibrational prior distributions are calculated from a simple density-of-states model. Only fair agreement with experiment is obtained. The best agreement for the mechanisms giving OH(A) in two 2-body dissociation steps is obtained by assuming 1.0 eV of internal energy remains in the second step. The OH(A) vibrational population distribution of the present work is similar to that found in the photolysis of H2O at 122 nm, where there is 1.10 eV of excess internal energy.  相似文献   

10.
The pressure dependence of reaction (1), Cl + C2H2 + M → C2H2Cl + M, has been measured by a relative rate technique using the pressure independent abstraction reaction (2), Cl + C2H6 → C2H5 + HCl, as the reference. Values of k1/k2 were measured at pressures between 25 and 1300 torr at four temperatures ranging from 252 to 370 K, using air, N2, or SF6 diluent gases. Low pressure measurements (10–50 torr) were performed at 230 K. Assuming a temperature-independent center broadening factor of 0.6 in the Troe formalism and using the established value of k2, these data can be used to determine the temperature dependent high and low pressure limiting rate constants over the range of conditions studied in air for reaction (1): k(1) = 2.13 × 10?10 (T/300)?1.045 cm3/molecule-s; and k0(1) = 5.4 × 10?30 (T/300)?2.09 cm6/molecule2-s. Use of these expressions yields rate constants with an estimated 20% accuracy including uncertainty in the reference reaction. The data indicate that the rate constant for a typical stratospheric condition at 30 km altitude is approximately 50% of that previously estimated.  相似文献   

11.
Absolute gas phase Sn concentrations in the range 1 × 1013 ? [Sn] ? 1 × 1014 ml?1 have been determined utilizing a technique based on the rapid (at T ? 900 K) titration reaction Sn + NO2 → SnO + NO (k(900–1100 K) ≈ 1 × 10?10 ml molecule?1 s?1) and the chemiluminescent indicator reaction Sn + N2O → SnO + N2 + hv(SnO a3 Σ-X1Σ).  相似文献   

12.
A semiclassical collision model has been used to calculate the rate constant for vibrational relaxation in HD (v = 1, j = 0) colliding with 4He. The He + HD potential surface was obtained from an analytical He + H2 surface previously used for similar calculations on He + H2 and He + D2. The theoretically calculated rate constant is about 50% below that experimentally determined in the temperature range 80–300 K.  相似文献   

13.
Total integral cross sections for 4He + H2 (ν = 0, j = 0) → 4He + H2 (ν′ = 1, j′ = 0, 2) have been calculated in the total energy range 1.2 to 5.5 eV, according to a quantal sudden approximation for the H2 rotational degrees of freedom and a close coupling expansion of the vibrational degree of freedom. Convergence of the above cross sections is investigated by employing four vibration basis sets in the close coupling calculations, i.e., ν = 0,1, ν = 0,1, 2, ν = 0, 1, 2, 3 and ν = 0, 1, 2, 3, 4. Between 4.2 and 5.5 eV calculations were done with three vibration basis sets; ν = 0.–4, ν = 0–5, and ν = 0–6. It is found that at least four vibrational basis functions are needed to converge (to within 5–10%) these cross sections in the above energy range. Comparison of breathing sphere calculations and summed sudden rotation results shows good agreement for the (weakly anisotropic) Mies-Krauss potential. However, as expected the former results underestimate the vibrational 0 → 1 total integral cross sections.  相似文献   

14.
The rate constant for the reaction between OH and vibrationally excited H2, OH + H2(ν = 1)→H2O + H, has been measured directly at 298 K. k01 is found to be (7.5±3)×10?13 cm3/molecules, corresponding to a vibrational rate enhancement of k01/k00 = (1.2 ± 0.4) × 102.  相似文献   

15.
Measurements have been made on the vibration—vibration (V—V) energy exchange rate between carbon monoxide and carbon dioxide in the temperature range 180 to 345 K. A steady-state vibrational fluorecence quenching technique was used in conjunction with an open flow gas system. Vibrational excitation of the carbon monoxide was accomplished by absorption of infrared radiation from prospane—oxygen flames. The measured rate constant for the process CO* (υ = 1) + CO2 → CO + CO*2(001) increased linearly with temperature, and after correction for the V—V exchange rate fo the back reaction, the rate constant has a value of (2.2 ± 0.3) × 103 torr?1 s?1 at 296 K. The data are compared to results at highest temperatures and to available theoretical calculations.  相似文献   

16.
Calculations of the nonequilibrium rate constant for the model system H2O2 + M → 2 OH + M over the temperature range of 300–1900°K, assuming that only vibrational, or that both vibrational and rotational, energy is transferred in a collision, show that (1) inefficient energy transfer leads to a distinctly non-Arrhenius temperature dependence, the nonlinearity being in principle different for different M, and (2) despite different activation energies for different M, the order of M efficiencies is preserved throughout the temperature range. A reversal of M efficiencies can occur only if there is a change of mechanism of the reaction over the temperature range investigated.  相似文献   

17.
Photoelectron energy and angular distributions are measured for the 2+1 multiphoton ionization process H2 X1Σg+ (ν = 0,J) + 2hv → E,F1Σg+E,JE = J) + hν → H2+X2Σg++) + e?, for νE = 0, 1, or 2 and for JE = 0 or 1 of the inner well of the double-minimum E,F state. Although a strong preference is found for ν+ = νE, the detailed H2+ vibrational distribution does not exhibit Franck-Condon behavior, and the photoelectron angular distributions vary markedly with both the JE value of the intermediate state and the ν+ value of the ion.  相似文献   

18.
The kinetics and mechanism for the reaction of NH2 with HNO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The major products of this reaction were found to be NH3 + NO formed by H‐abstraction via a long‐lived H2N???HNO complex and the H2NN(H)O radical intermediate formed by association with 26.9 kcal/mol binding energy. The rate constants for formation of primary products in the temperature range of 300–3000 K were predicted by variational transition state or RRKM theories. The predicted total rate constants at the 760 Torr Ar pressure can be represented by ktotal = 3.83 × 10?20 × T+2.47exp(1450/T) at T = 300–600 K; 2.58 × 10?22 × T+3.15 exp(1831/T) cm3 molecule?1 s?1 at T = 600?3000 K. The branching ratios of major channels at 760 Torr Ar pressure are predicted: k1 + k3 + k4 producing NH3 + NO accounts for 0.59–0.90 at T = 300–3000 K peaking around 1000 K, k2 accounts for 0.41–0.03 at T = 300–600 K decreasing with temperature, and k5 accounts for 0.07–0.27 at T > 600 K increasing gradually with temperature. The NH3 + NO formation rate constant was found to be a factor of 3–10 smaller than that of the isoelectronic reaction CH3 + HNO producing CH4 + NO, which has been shown to take place by barrierless H‐abstraction without involving a hydrogen‐bonding complex as in the NH2 case. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 677–677, 2009  相似文献   

19.
Rate constants for the two stages of germane dissociation (GeH4 → GeH2 + H2(I) and GeH2 → Ge + H2(II) have been derived from the studies of the chemiluminescence kinetics during germane dissociation in the presence of nitrous oxide behind shock waves at 1060–1300 K and the full density equal to ~10?5 mol/cm3. Analysis in terms of the RRKM model gave the following expressions for the rate constants of these reactions in the high and low pressure limits: k 1, ∞ = 2.0 × 1014exp(?208.0/RT) s?1; k 1, 0 = 1.7 × 1018(1000/T)3.85exp(?208.0/RT) cm3/(mol s); and k 2, 0 = 2.8 × 1015(1000/T)1.32exp(?135.0/RT) cm3/(mol s). The results, in combination with the available enthalpies of formation of radical GeH2, show that the back reaction for stage (I) has an energy barrier of about 66 kJ/mol.  相似文献   

20.
The mechanism of formation of the electronically excited radical OH*(A2Σ+) has been studied by analyzing calculations quantitatively describing the results of shock wave experiments carried out in order to determine the moment of maximum OH* radiation at temperatures T < 1500 K and pressures P ≤ 2 atm in the H2 + O2 mixtures diluted by argon when the vibrational nonequilibrium is a factor determining the mechanism and rate of the overall process. In kinetic calculations, the vibrational nonequilibrium of the initial H2 and O2 components, the HO2, OH(X2Π), O2*(1Δ) intermediates, and the reaction product H2O were taken into account. The analysis showed that under these conditions the main contribution to the overall process of OH* formation is caused by the reactions OH + Ar → OH* + Ar, H2 + HO2 → OH* + H2O, H2 + O*(1D) → OH* + H, HO2 + O → OH* + O2 and H + H2O → OH* + H2, which occur in the vibrational nonequilibrium mode (their activation barrier is overcome due to the vibrational excitation of reactants), and by H + O3 → OH* + O2 and H + H2O2 → OH* + H2O, which are reverse to the reactions of chemical quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号