首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Mass spectrometric studies of the ions present in H2/O2/N2 flames with potassium and chlorine added have demonstrated that ionization can occur in the forward steps of K + Cl ? K+ + Cl? (II), KCl + M ? K+ + Cl? + M (IV), where M is any third body. Variations of [K+] with time in these systems have been measured and establish that the rate coefficients (in ml molecule?1 s?1) of the ion-producing steps are k2 = 5 × 10?10T?12 exp(?10 500/T) and k4 = 2.2 × 107T?3.5 × exp(?60 800/T). Coefficients for ion-ion recombination have been obtained from k2 and k4 using the equilibrium constants of (II) and (IV) and are k?2 = 1.7 × 10?9T?12 and k?4 = 1.1 × 10?17T?3, with each one in the ml molecule?1 s?1 system of units. Replacement of the N2 in one of these flames with sufficient Ar to maintain the temperature constant leaves the measured k2 and k?2 unchanged, but lowers the observed k4 and k?4. This confirms that ion-recombination in the backward step in (II) is a two-body process, whereas in (IV) it is termolecular.  相似文献   

3.
A method is proposed for studying the influence of vibrational excitation of radicals on their reactivity in bimolecular reactions. Investigations of the reaction CF2Cl + HCl → CF2 HCl + Cl by this method show for the first time that this reaction is accelerated by vibrational excitation of CF2Cl* radicals. Under the experimental conditions, it was found that k*1/k1 ? 6.0.  相似文献   

4.
N2(A, υ = 0-3) produced by the Ar(3P0,2) + N2 reaction and detected by laser-induced fluorescence undergoes rapid, stepwise vibrational relaxation but slow electronic quenching with added CH4 or CF4. Rate constants, kQυ, of 1.5, 3.1, and 5.0 × 10?12 cm3 s?1 are measured for Q = CH4, υ = 1-3, and 0.47, 1.8, and 5.5 × 10?12 cm3 s?1 for Q = CF4, υ = 1-3, with ≈±20% accuracy (1σ). Information is also obtained for the unrelaxed, relative υ populations.  相似文献   

5.
The rate of the reaction
has been investigated at 40–65°C with [HClO4] varying from 0.04 to 0.6 M (μ = 0.6 M, NaClO4). The observed rate law has the form: -d[Cr(NH3)5(NCO)2+]/dt = kobs[Cr(NH3)5(NCO)2+] where kobs = a[H+]2{1 + b[H+]2} and ?1 at 55.0°C, a = 0.36 M?1 s?2 and b = 6.9 × 10?3 M?1 s?1. The rate of loss of Cr(NH3)5(NCO)2+ increases with increasing acidity to a limiting value (at [H+] ~ 0.5 M) but the yield of Cr(NH3)63+ decreases with increasing [H+] and increases with increasing temperature. In the kinetic studies the maximum yield of Cr(NH3)63+ was 35% but a synthetic procedure has been developed to give a 60% yield.  相似文献   

6.
Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl + CH2F2) = 1.19 × 10?17 T2 exp(?1023/T) cm3 molecule?1 s?1 (253–553 K), k(Cl + CH3CCl3) = 2.41 × 10?12 exp(?1630/T) cm3 molecule?1 s?1 (253–313 K), and k(Cl + CF3CFH2) = 1.27 × 10?12 exp(?2019/T) cm3 molecule?1 s?1 (253–313 K). Results are discussed with respect to the literature data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 401–406, 2009  相似文献   

7.
The kinetics of reactions involving the ground-state azide radical, N3 (X2Πg, have been investigated in a discharge-flow system using mass spectrometric detection with molecular-beam sampling. The following rate constants have been determined at 295 K: Cl + N3Cl → Cl2 + N3,k295 = (1.78 ± 0.26) × 10?12 cm3 s?1 (1σ): N3 + NO → N2O + N2, k295 = (1.19 ± 0.31) × 10.?12 cm3 s?1 (1σ). A method for determining absolute N3 radical concentration is reported.  相似文献   

8.
A jet-stream kinetic technique and the resonance fluorescence method applied to detection of iodine atoms were used to measure the rate constants of the reactions of the IO· radical with the halohydrocarbons CHFCl-CF2Cl (k = (3.2 ± 0.9) × 10?16 cm3 molecule s?1) and CH2ClF (k = (9.4 ± 1.3) × 10?16 cm3 molecule s?1), the hydrogen-containing haloethers CF3-O-CH3 (k = (6.4 ± 0.9) × 10?16 cm3 molecule s?1) and CF3CH2-O-CHF2 (k = (1.2 ± 0.6) × 10?15 cm3 molecule s?1), and hydrogen iodide (k = (1.3 ± 0.9) × 10?12 cm3 molecule s?1) at 323 K.  相似文献   

9.
A combined EPR/LMR spectrometer and fast-flow system has been used to investigate the reactions HO2 + NO(k1), HO2 + OH(k2), HO2 + HO2(k3) at room temperature. The rate constants have been measured: k1 = (7.0 ± 0.6) × 10?12 cm3 s?1 (P = 7–10 Torr);k2 = (5.2 ± 1.2) × 10?11 cm3 s?1 (P = 8–10 Torr);k3 = (1.65 ± 0.3) × 10?12 cm3 s?1 (P = 2.1–24.9 Torr). The conclusion is drawn from analysis of the literature and the present work that k2 and k3 do not depend on pressure up to 1 atm.  相似文献   

10.
The reaction of CF3Sn(CH3)3 with BCl3 and BBr3 in the presence of trimethylamine has been investigated. The volatile adducts CF2XBF2·N(CH3)3 (X = F, Cl and Br) have been isolated from the complex reaction mixture while the anions BF?4, CF2XBF?3, CF3BF2CF2X? and (CF2X)2BF?2 have been identified in the residue. [(CH3)3NH][CF2ClBF3] has been isolated. The formation of the CF2XB derivatives is likely to occur via CF2 insertion, which is promoted by the presence of N(CH3)3. NMR, IR, Raman and mass spectra of the novel fluoromethyl borane derivatives are reported.  相似文献   

11.
The structures and inversion barriers of CF3? and SiF3? have been calculated using ab initio SCF theory with several different basis sets and limited CI. The highest occupied molecular orbital of planar SiF3? is shown to have a1′ symmetry, rather than the normally expected a2″ symmetry. The best estimates of the inversion barriers are 119 kcal mol?1 (CF3?) and 82 kcal mol ?1 (SiF3?).  相似文献   

12.
The reaction of O2(1Δg) with HO2(X?) was studied in an isothermal flow reactor in the pressure range 7?p? 10.7 mbar at temperatures between 299?T? 423 K. H-atom production was observed in the reaction O2(1Δg) + HO22A′) - H(2S)+ 2O2 (3Σg?). The rate of this reaction (k1) is estimated to be k1 = (1 ± 0.5) × 1014 CM3 Mol?1 s?1. The implications of this reaction to recent determinations of the rate of the reaction H + O2(1Δg) are discussed.  相似文献   

13.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

14.
The time-resolved laser magnetic resonance (LMR) method has been applied to kinetic measurements for the first time. An intracavity spectrometer based on a CO2 laser with resonant modulation of the magnetic field and with phase-sensitive detection of the signal has been used. Kinetic curves of generation and disappearance of CI atoms and SiH3 radicals were obtained in the pulse photolysis of a mixture of S2Cl2 + SiH4 under the fourth harmonic of a Nd laser (265 nm, 0.5 mJ, 12.5 Hz) at a total pressure of 520–980 Pa (he as diluent) and a temperature of 326 K. The reagent concentrations were: [S2Cl2 = (2.0?10.2)×1014 cm?3, [SiH4 = (2.4?17.4)×1013 cm?3. To remove the transition saturation, 5.3×1015 cm?3 CCl4 was introduced into the reactor. The fraction of dissociated S2Cl2 was 1‰ Rate constants of the reactions (I) Cl+S2Cl2 → products, (II) Cl+SiH4 → HCl+SiH3 and a preliminary rate constant of the reaction (III) SiH3 + S2Cl2 → products were obtained: k1 ≤ (4.3±1.2)×10?12 cm3/s, k2 = (2.3±0.5)×10?10 cm3/s, k3 = (2.4±0.5)×10?11 cm3/s. At a signal-to-noise ratio of 1:1, 1000 pulses and a 12 cm long detection zone the sensitivity to Cl atoms and to SiH3 radicals was 4×1010 cm?3 and = 1011 cm?3, respectively. The time resolution of the method was 4 μs. The method is shown to be promising for kinetic investigations and experiments on fast processes.  相似文献   

15.
A fast-flow apparatus with mass spectrometric detection was used to study the system F + CHFO between 2 and 3.5 mbar total pressure. The rate constant of the primary reaction was evaluated directly to yield at 298 K k(1) = (8.8 ± 1.4) * 10?13 cm3 * molecule?1 * s?1. Numerical modelling was used to determine the rate constant at 298 K of the subsequent reaction CFO + CFO → CF2O + CO: k(2) = (4.9 ± 2.0) * 10?11 cm3 * molecule?1 * s?1. The possible occurrences of secondary reactions, CFO + F + M → CF2O + M, and CFO + F2 → CF2O + F, can be excluded under the present conditions. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The rate constant for the reaction of CFCl2 with oxygen is measured in the pressure range 0.2–12 Torr using pulsed-laser photolysis and time-resolved mass spectrometry. CFCl2 radicals are generated by photolysis of CFCl3 at 193 nm. The reaction kinetics are recorded by monitoring the build-up of the CFCl2O2 radical concentration. The reaction is in its fall-off region, and the parameters of the relation for the treatment of the fall-off are for M = N2: k(0) = (5.0 ± 0.8) × 10?30 cm6 molecule?2 s?1. k(∞) = (6.0 ± 1.0) × 10?12 cm3 molecule?1 s?1. This value of k(∞) is consistent with results obtained at low pressure taking Fc = 0.6, but the uncertainty in the high-pressure limit is much higher. The results are compared to measurements performed with CH3 and CF3. Estimates of the relative third-body efficiencies of He and N2 are given for CFCl2 and CF3.  相似文献   

17.
Negative ion formation in CF2Cl2, CF3Cl and CFCl3 under low-energy electron impact has been investigated using a trochoidal monochromat The ions observed are F?, Cl?, FCl?, Cl2?, CFCl2? from CF2Cl2; F?, Cl?, FCl?, CF2Cl Quoting available thermochemical data, it can be shown that most of the observed negative ions arise from dissociative attachment processes. Appearance The extremely high yield of Cl? in CFCl3, which is observed at ε = 0.0 eV, will be discussed with regard to the lifetime of this molecule i  相似文献   

18.
Summary Pulsed laser photolysis with resonance fluorescence monitoring of OH radicals was applied at T = 300±2 K to obtain the rate constants of k1= (3.38±0.60)x10-12, k2= (2.52±0.44)x10-13and k3 = (1.06±0.30)x10-13cm3molecule-1s-1with 2σprecision given for the overall reactions OH + CH3CH2OH (1), OH + CF2HCH2OH (2) and OH + CF3CH2OH (3), respectively. k2is the first direct kinetic data for the reaction of OH radicals with CF2HCH2OH reported in the literature.</o:p>  相似文献   

19.
That excitation of CF3NO with wavelengths between 580 and 660 nm yields CF3 + NO has been shown by two direct techniques. In the first, the CF3 and NO radicals have been scavenged by their reaction with Cl2 to yield CF3Cl and NOCl. as detected by both infrared and mass spectrometry. In the second technique, NO (υ=1) vibrational fluorescence has been observed following tunable dye laser excitation of CF3NO. The rate of vibrational relaxation of NO (υ=1) in collisions with CF3NO has been found to be (2.19 ± 0.19) × 103 s?1 torr ?1.  相似文献   

20.
The rate coefficient of the reaction CH2 + O2OH → HO2 + CH2O, has been measured at 300 K by the LMR flow-tube method, and found to have the unexpectedly large value k = (2?1+2) × 10?12 cm3 molecule?1 s?1. This reaction, preceded by isomerization, may be an important route for the oxidation of CH3O in the upper atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号