首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitridorhenium(V) complexes ReNCl(2)(PCy3)(2) (1), ReNBr(2)(PCy3)(2) (2), ReNCl(2)(PPh3)(2) (3), and ReNBr(2)(PPh3)(2) (4) produce structured emission spectra upon excitation at low temperature. The origin, E(00), occurs at 15 775, 16 375, 15 875, and 16 300 cm(-1), respectively. The vibronic peaks are regularly spaced with an average energy separation corresponding to the Re triple bond N stretching frequency. The nitridorhenium stretching frequency ranges from 1095 to 1101 cm(-1), as determined by Raman and IR spectroscopy. The excited-state distortions are calculated by fitting the emission spectra. The excited state arises primarily from a d(xy) (ReN nonbonding) to d(yz) (ReN pi antibonding) transition. The rhenium-nitrogen bond length in the excited state is 0.08 A longer than in the ground electronic state, which is consistent with the difference in bond lengths of ReN bonds of bond order 3 and bond order 2.5 as determined from molecular structures.  相似文献   

2.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

3.
4.
In order to understand conformational isomerism in methacryloyl bromide (MABR) in the ground (S(0)) and the first excited (S(1)) electronic states and to interpret the vibrational and electronic spectra of its conformers in the S(0) state, quantum mechanical calculations using Density Functional Theory (DFT) and RHF methods with extended basis sets 6-31G, 6-31G** and 6-311+G(d,p) have been conducted. In RHF calculations, electron correlation effects have been included at the M?ller-Plesset MP2 level. It is inferred that in both the electronic states the molecule may exist in two isomeric forms-s-trans and s-cis; the former being more stable than the later by about 1.629 kcal mol(-1) in the S(0) state and by about 2.218 kcal mol(-1) in the S(1) state. Electronic transition tends to increase the s-trans/s-cis and s-cis/s-trans, rotational barriers from 7.059 kcal mol(-1) (2468.1 cm(-1)) and 5.428 kcal mol(-1) (1897.8 cm(-1)) in S(0) state to 23.594 kcal mol(-1) (8249.4 cm(-1)) and 21.376 kcal mol(-1) (7473.9 cm(-1)) in the S(1) state. Completely optimized geometries of the two conformers in S(0) state reveal that while there is no significant difference in their bond lengths, some of the bond angles associated with COBr group are appreciably different. Electronic excitation tends to change both the bond lengths and bond angles. Based on suitably scaled DFT and RHF results obtained from the use of 6-31G** and 6-311+G(d,p) basis sets, a complete assignment is provided to the fundamental vibrational bands of both the s-trans and s-cis conformers in terms of frequency, form and intensity of vibrations and potential distribution across the symmetry coordinates in the S(0) state and a comparison has been made with experimental assignments. A theoretical prediction of the electronic transitions in the near UV-region in the two conformers and their tentative assignment has been provided on the basis of CI level calculations using 6-31G basis set.  相似文献   

5.
Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Sigma+ and 1Pi stationary points, and for the bent ground-state X 1A', and excited-states 2 1A' and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas-Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol(-1) for the 2 1A' state and 52.6 kcal mol(-1) for the 1 1A" state. The theoretical CC and CASSCF methods show lower adiabatic excitation energies for the 1 1A" state (53.1 kcal mol(-1)) than those for the corresponding 2 1A' state (57.6 kcal mol(-1)), suggesting that the 1 1A" state might be the first singlet excited state while the 2 1A' state might be the second singlet excited state.  相似文献   

6.
The luminescence spectra of [(tpy)(2)Ir(CN-t-Bu)2](CF(3)SO(3)) in methylcyclohexane glass and frozen n-nonane at 15 K reveal well-resolved vibronic fine structure. The vibronic peaks are assigned by comparison with the vibrational frequencies obtained from Raman and IR spectra and those obtained using DFT electronic structure calculations. The magnitudes of the distortions along the normal coordinates are calculated by fitting the emission spectra using the time-dependent theory of spectroscopy. Broadening effects and the MIME frequency observed at room temperature are interpreted. The most highly distorted normal modes involve atomic motions on the tpy ligand, consistent with the metal to ligand/ligand centered assignment of the electronic transition.  相似文献   

7.
8.
The direct and inverse vibrational problems are solved for the rotational isomers of the glyoxal and oxalyl halide molecules in the ground and first excited singlet states. Translated from Zhurnal Strukturnoi Khimii, Vol. 38, No. 2, pp. 287–292, March–April, 1997.  相似文献   

9.
《Chemical physics letters》1986,124(4):336-340
Excited-state absorption spectra are reported for the luminescent metal-ligand charge-transfer states of copper(I) complexes with the ligands 2,9-dimethyl- and 2.9-diphenyl-1.10-phenanthroline. Excited-state lifetimes derived from transient absorbance decay, ground-state recovery or luminescence decay measurements all agree within experimental error but exhibit a significant concentration dependence. A kinetic analysis shows that the phenomenon is attributable to formation of dimers of the parent complexes.  相似文献   

10.
Very recently, we have shown the suitability to combine the G-particle-hole Hypervirial (GHV) equation method (Alcoba et?al. in Int J Quantum Chem 109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et?al. in Nucl Phys A 202:127, 1973) for computing various energy differences of an electronic system spectrum (Valdemoro et?al. in J Math Chem 50:492, 2012). The purpose of this paper is to extend our preliminary studies by applying the combined GHV-HO method to obtain the set of ground and low-lying excited states potential energy curves of several selected electronic systems. The calculations confirm the reliability of the method.  相似文献   

11.
12.
The ground state and 1B2 excited state of Cu(C2H4)+ and of CuX(C2H4) (X  F, Cl) have been investigated by the Hartree-Fock-Slater (HFS) method. The main metal-ligand interactions in the ground state are ethene π → Cu 4s donation and Cu 3dπ → ethene π* backdonation, which have comparable contributions to the metal-ligand bond strength. The excitation of CuX(C2H4) does not involve an alkene π → metal charge transfer (LMCT), but instead is metal 3d → alkene π* charge transfer (MLCT) in character. The implications for the photochemistry of olefin-copper(I) complexes are discussed.  相似文献   

13.
From electronic absorption and emission spectra in solutions it appears that intramolecular hydrogen bonding, strong enough to resist rupture by dioxane, exists in o-chloroaniline in the excited state only. Fluorescence quenching behaviour in the presence of dioxane indicates that intermolecular hydrogen bonding significantly increases intersystem crossing rate in m-chloroaniline only. This and other emission spectral characteristics in this hydrogen bonding solvent at 77 K show that the first excited singlet electronic state S1 of m-chloroaniline is ππ*, whereas the states S1 of aniline, toluidines and p-chloroanilines have some nπ* character. On formation of intermolecular hydrogen bond in dioxane, the corresponding triplet states of the molecules acquire pronounced nπ* character. An examination of phosphorescence decay curves reveals triplet complex formation in m- and p-chloroaniline but there is no evidence of triplet complex in the other aromatic amines studied.  相似文献   

14.
15.
16.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

17.
A series of new heteroleptic iridium(III) complexes [Ir(C?N)2(N?N)]PF6 ( 1 ‐ 6 ) (each with two cyclometalating C?N ligands and one neutral N?N ancillary ligand, where C?N = 2‐phenylpyridine (ppy), 5‐methyl‐2‐(4‐fluoro)phenylpyridine (F‐mppy), and N?N = 2,2′‐dipyridyl (bpy), 1,10‐phenanthroline (phen), 4,4′‐diphenyl‐2,2′‐dipyridy (dphphen) were found to have rich photophysical properties. Theoretical calculations are employed for studying the photophysical and electrochemical properties. All complexes are investigated using density functional theory. Excited singlet and triplet states are examined using time‐dependent density functional theory. The low‐lying excited‐state geometries are optimized at the ab initio configuration interaction singles level. Then, the excited‐state properties are investigated in detail, including absorption and emission properties, photoactivation processes. The excited state of complexes is complicated and contains triplet metal‐to‐ligand charge transfer, triplet ligand‐to‐ligand charge transfer simultaneously. Importantly, the absorption spectra and emission maxima can be tuned significantly by changing the N?N ligands and C?N ligands. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

18.
In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e?/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.  相似文献   

19.
We report on vibrational coherence dynamics in excited and ground electronic states of all-trans retinal protonated Schiff-bases (RPSB), investigated by time-resolved Degenerate Four-Wave-Mixing (DFWM). The results show that wave packet dynamics in the excited state of RPSB consist of only low-frequency (<800 cm(-1)) modes. Such low-frequency wave packet motion is observed over a broad range of detection wavelengths ranging from excited state absorption (~500 nm) to stimulated emission (>600 nm). Our results indicate that low-frequency coherences in the excited state are not activated directly by laser excitation but rather by internal vibrational energy redistribution. This is supported by the observation that similar coherence dynamics are not observed in the electronic ground state. Challenging previous experimental results, we show that the formation of low-frequency coherence dynamics in RPSB does not require significant excess vibrational energy deposition in the excited state vibrational manifolds. Concerning ground state wave packet dynamics, we observe a set of high-frequency (>800 cm(-1)) modes, reflecting mainly single and double bond stretching motion in the retinal polyene-chain. Dephasing of these high-frequency coherences is mode-dependent and partially differs from analogous vibrational dephasing of the all-trans retinal chromophore in a protein environment (bacteriorhodopsin).  相似文献   

20.
Photophysical kinetic results have played an important role in assessing excited state relaxation pathways in transition metal complexes. The applicability of a kinetic analysis is critically dependent on the quality of the individual decay rates, the temperature range examined, and the model used to extract the activation parameters. The extensive literature describing the temperature dependence of excited state depopulation in d3 and d6 complexes permits an evaluation of both the power and limitations of kinetic arguments in assessing the mechanism of excited state relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号