首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on experimental research in shock loading of solid-state materials it is shown that among the important dynamic characteristics of the process, like spatial-temporal mass velocity profiles of shock waves, are the mass velocity variation, velocity defect, and structural instability threshold recorded in real time. Analysis of these characteristics depending on the strain rate, target thickness, and structural state of material demonstrates that conventional approaches of continuum mechanics fail to provide their adequate interpretation and simulation of shock wave processes. A new concept of shock wave processes in condensed media is proposed. The concept, being based on nonlocal nonequilibrium transport theory, allows describing the transition from elastic to hydrodynamic response of a medium depending on the loading rate and time. A nonstationary elastoplastic wave model is proposed for describing the relaxation of an elastic precursor and formation of a retarded plastic front during the wave propagation in a medium with regard to structural evolution. Analysis of the experimental data shows that the division of stresses and strains into elastic and plastic components is incorrect for shock loading.  相似文献   

2.
A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics.  相似文献   

3.
多孔脆性材料对高能量密度脉冲的吸收和抵抗能力   总被引:2,自引:0,他引:2       下载免费PDF全文
喻寅  贺红亮  王文强  卢铁城 《物理学报》2015,64(12):124302-124302
作用在脆性结构材料表面的高能量密度脉冲会以冲击波的形式传播进入材料内部, 导致压缩破坏和功能失效. 通过设计并引入微孔洞, 显著增强了脆性材料冲击下的塑性变形能力, 从而使脆性结构材料可以有效地吸收耗散冲击波能量, 并抑制冲击诱导裂纹的扩展贯通. 建立格点-弹簧模型并用于模拟研究致密和多孔脆性材料在高能量密度脉冲加载下的冲击塑性机理、能量吸收耗散过程和裂纹扩展过程. 冲击波压缩下孔洞塌缩, 导致体积收缩变形和滑移以及转动变形, 使得多孔脆性材料表现出显著的冲击塑性. 对致密样品、气孔率5%和10%的多孔样品吸能能力的计算表明, 多孔脆性材料吸收耗散高能量密度脉冲的能力远优于致密脆性材料. 在短脉冲加载下, 相较于遭受整体破坏的致密脆性材料, 多孔脆性材料以增加局部区域的损伤程度为代价, 阻止了严重的冲击破坏扩展贯通整个样品, 避免了材料的整体功能失效.  相似文献   

4.
炸药水下爆炸能量输出特性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解炸药水中爆炸能量的输出特性,特别是冲击波能随距离的衰减规律,对有效比冲能进行了研究。经过理论推导发现,传统的有效比冲能计算公式仍然满足相似律。TNT炸药水下爆炸试验结果表明,炸药的有效比冲能、比气泡能和总能量的测量结果与经验公式计算结果吻合较好。通过对试验结果进行分析,拟合得到了有效比冲能随距离变化的趋势线。对比经验公式结果,发现在小药量试验中冲击波能随距离的衰减更明显。  相似文献   

5.
In this work, the dynamics and internal structure of shock waves in picosecond laser–material interaction are explored at the atomistic level. The pressure of the shock wave, its propagation, and interaction zone thickness between the plume and ambience are evaluated to study the effect of the laser absorption depth, ambient pressure, and laser fluence. Sound agreement is observed between the MD simulation and theoretical prediction of shock wave propagation and mass velocity. Due to the strong constraint from the compressed ambient gas, it is observed that the ablated plume could stop moving forward and mix with the ambient gas, or move backward to the target surface, leading to surface redeposition. Under smaller laser absorption depth, lower ambient pressure, or higher laser fluence, the shock wave will propagate faster and have a thicker interaction zone between the target and ambient gas.  相似文献   

6.
In anisotropic media, the direction of energy propagation does not necessarily coincide with the wave normal, i.e. the energy flux vector does not coincide with the wave normal. Since, experimentally, one measures group velocity not phase velocity, one must therefore be careful in interpreting ultrasonic wave speed measurements in anisotropic media. This is of particular importance in elastic property reconstruction where acoustic velocity measurements are used as the basis for determining anisotropic material properties. In this work, the consequences of energy flux deviation from the wave normal are considered for typical experimental geometries. Particular attention is devoted to developing appropriate relationships between the phase velocity and ultrasonic transit time measurements, as these relations are most useful for elastic property reconstruction. In all the cases considered, it is shown that the phase velocity can be directly calculated from appropriate time delay measurements.  相似文献   

7.
The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm3 and 1.55(2) g/cm3. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formed in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.  相似文献   

8.
In this work, molecular dynamics simulation is conducted to explore the shock wave phenomena in a nanodomain in near-field laser–material interaction. A large system consisting of over 800,000 atoms is studied. The work focuses on the kinetic and physical properties of the disturbed gas compression driven by the high speed movement of the molten particulates ejected from the solid target in a nanodomain. The quick interaction between solid and gas atoms compresses the gas and forms a steep shock wave front, which moves at a supersonic speed. The fast compression of gas also induces a steep interface of density, temperature and pressure distribution, which is viewed as typical characteristics of nanoscale shock waves. Evolutions of shock wave front position, velocity and Mach number are also explored and show quick decay during wave propagation.  相似文献   

9.
A self-similar flow behind a cylindrical shock wave is studied under the action of monochromatic radiation in a rotational axisymmetric dusty gas. The dusty gas is taken to be a mixture of small solid particles and perfect gas,and solid particles are continuously distributed in the mixture. The similarity solutions are obtained and the effects of the variation of the radiation parameter, the ratio of the density of solid particles to the initial density of the gas, the mass concentration of solid particles in the mixture and the index for the time dependent energy law are investigated.It is observed that an increase in the radiation parameter has decaying effect on the shock waves; whereas the shock strength increases with an increase in the ratio of the density of solid particles to the initial density of the gas or the index for the time dependent energy law. Also, it is found that an increase in the radiation parameter has effect to decrease the flow variables except the density and the azimuthal component of fluid velocity. A comparison is also made between rotating and non-rotating cases.  相似文献   

10.
A supersonically expanding arc plasma in argon is analyzed both experimentally and theoretically. The plasma is created in a cascaded arc and extracted through a hole in the anode. It emanates in a large vacuum system, where it expands supersonically. This expansion is limited by a shock wave. After the shock wave a subsonic plasma beam is created. A quasi one-dimensional model, based on the conservation of mass, momentum and energy is presented. The shock wave is treated as a discontinuity. The electron density, the gas velocity and the gas temperature are measured as a function of the position in the expansion by means of Stark broadening and Doppler spectroscopy. The model calculations agree well with the measurements, especially in the first part of the supersonic flow.  相似文献   

11.
SpatialandtemporalstudyofshockwavesgeneratedbylaserablationforTitargetWUJiada;WULinghui;WUChangzheng;LIFuming(StateKeyJointLa...  相似文献   

12.
 利用一级轻气炮作为加载手段,研究了无钴合金钢在3~20 GPa压力区间的冲击响应特性。用激光干涉测速——VISAR记录了双波结构的自由面速度剖面,并利用常压下的弹性纵波速度近似替代低压冲击下的弹性先驱波速度,确定了无钴合金钢的Hugoniot关系。根据自由面速度反映的层裂信息,给出了无钴合金钢的Hugoniot弹性极限、层裂强度以及层裂片厚度等动态力学参数。  相似文献   

13.
In this paper, a second-order scheme for the Quiet Direct Simulation (QDS) of Eulerian fluids is proposed. The QDS method replaces the random sampling method used in Direct Simulation Monte Carlo (DSMC) methods with a technique whereby particles are moved, have their properties distributed onto a mesh, are destroyed and then are recreated deterministically from the properties stored on the mesh using Gauss–Hermite quadrature weights and abscissas. Particles are permitted to move in physically realistic directions so flux exchange is not limited to cells sharing an adjacent interface as in conventional, direction decoupled finite volume solvers. In this paper the method is extended by calculating the fluxes of mass, momentum and energy between cells assuming a linear variation of density, temperature and velocity in each cell and using these fluxes to update the mass, velocity and internal energy carried by each particle. This Euler solver has several advantages including large dynamic range, no statistical scatter in the results, true direction fluxes to all nearby neighbors and is computationally inexpensive. The second-order method is found to reduce the numerical diffusion of QDS as demonstrated in several verification studies. These include unsteady shock tube flow, a two-dimensional blast wave and of the development of Mach 3 flow over a forward facing step in a wind tunnel, which are compared with previous results from the literature wherever is possible. Finally the implementation of QUIETWAVE, a rapid method of simulating blast events in urban environments, is introduced and the results of a test case are presented.  相似文献   

14.
Acoustic emission sensor is used to research the time-of-flight of the shock wave induced by laser-plasma in air for real time nondestructive evaluation (NDE) of laser shock processing. The time-of-flight of the shock wave propagating from the source to the sensor declines nonlinearly and similarly at the different distances for different laser energies. The velocity of the shock wave at the distance of 30 mm increases faster than that of the distance of 35 mm. The relationship between the laser energy and the distance is almost linearly when the signal with distortion is measured by acoustic emission sensor. Finally, Taylor solution is used to analyze the experimental results, and the empirical formula between the energy of the shock wave and the laser energy is established, which will provide a theoretical basis for real time NDE of laser shock processing.  相似文献   

15.
To investigate the energy partitioning up to the fourth oscillation of a millimeter-scale spherical cavitation bubble induced by laser, we used nanosecond laser pulses to generate highly spherical cavitation bubbles and shadowgraphs to measure the radius-time curve. Using the extended Gilmore model and considering the continuous condensation of the vapor in the bubble, the time evolution of the bubble radius, bubble wall velocity, and pressure in the bubble is calculated till the 4th oscillation. Using Kirkwood-Bethe hypothesis, the evolution of velocity and pressure of shock wave at the optical breakdown, the first and second collapses are calculated. The shock wave energy at the breakdown and bubble collapse is directly calculated by numerical method. We found the simulated radius-time curve fits well with experimental data for the first four oscillations. The energy partition at the breakdown is the same as that in previous studies, the ratio of shock wave energy to bubble energy is about 2:1. In the first collapse and the second collapse, the ratio of shock wave energy to bubble energy is 14.54:1 and 2.81:1 respectively. In the third and fourth collapses, the ratio is less, namely than 1.5:1 and 0.42:1 respectively. The formation mechanism of the shock wave at the collapse is analyzed. The breakdown shock wave is mainly driven by the expansion of the supercritical liquid resulting from the thermalization of the energy of the free electrons in the plasma, and the collapse shock wave is mainly driven by the compressed liquid around the bubble.  相似文献   

16.
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.  相似文献   

17.
The herder’s scourge/whip motion dynamics is modeled and analyzed. Using generalized functions the potential and energy of the shock wave packet produced by the scourge motion are determined in terms of parameters of scourge and its initial velocity. The scourge is shown to be similar to a specific variable-mass rocket. This model is suggested as well for thundercracks. The reverse motion of scourge is applied to macroeconomics for modeling the growth of wealth characterized by the market index variation in time including bull, bear, and bull-bear markets.  相似文献   

18.
Measurements of acoustic-to-seismic coupling ratio, i.e. the ratio of the pressure exerted by an acoustic wave at a point on the surface to the acoustic particle velocity generated at the surface at that point, may be used to determine both elastic and structural properties of poroelastic materials. The sound pressure is measured using a microphone and, usually, the velocities are measured using geophones. Problems with geophone sensors have been shown to include both mass loading of the soil and coupling resonances within the frequency range of interest. The latter can lead to inaccurate amplitude and phase measurements. In an attempt to overcome these problems, the use of a Laser-Doppler vibrometer (LDV) has been investigated. Previous work with compacted plane soil surfaces has been extended to loosely consolidated soils. Good agreement has been found between geophone and LDV measurements of vertical particle velocity for a continuous wave sound source. Problems with poor LDV signal-to-noise ratio in unconsolidated materials have been overcome using local ground treatment. Subsequent modelling shows reasonable agreement between the data and the predicted values of material properties.  相似文献   

19.
高速颗粒流在天文、自然灾害、工业安全、医疗工业和国防等领域有着重要应用。采用基于分层流模型的直接数值模拟方法,对平面激波与椭圆柱云的相互作用进行数值研究,重点关注椭圆柱横截面的不同长短轴之比和椭圆柱横截面长轴与来流方向所成角度对流场的影响,从气体来流方向上的速度、x轴和y轴方向上的均方根速度、动能、内能和湍动能的分布上进行分析,对能量在计算域的上游区域、椭圆柱云区域和下游区域进行定量分析。同时针对椭圆柱改进了一维体积平均模型,利用该模型拟合了由直接数值模拟得到的反射激波和透射激波位置,获得了最适配的一维体积平均模型中的人工有效阻力系数,并探讨此系数的分布规律。  相似文献   

20.
余庆  张辉  马丹妮 《强激光与粒子束》2021,33(7):075001-1-075001-7
以能量平衡方程为基础,采用不同的电导率唯象模型描述了液相放电等离子体圆柱形通道特性,得到了通道内半径、温度、电阻、电流和耗散能量随时间的变化关系,还给出了距离放电间隙中心一定距离处的冲击波压力变化,并与前人利用等离子体通道球状模型计算得到的结果进行了比较。结果表明:把等离子体通道看成球状和看成圆柱状在描述通道压力和通道半径时差异显著,而在描述其他物理特性时差别不大;三种电导率模型在描述等离子体通道物理特性时,变化趋势大体相同,而在描述激波特性时,电导率模型σ2更符合实际;通过对比电学参数与压力参数的变化,就可以在实验中根据实验数据以及具体的研究问题进行模型的适用性选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号