首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The magnetocaloric effect (MCE) and the magnetostriction in the Ni49.3Mn40.4In10.3 Heusler alloy have been measured in ac magnetic fields to 8 T. It is shown that the contributions of the magnetic and structural subsystems to MCE have opposite signs; in this case, the contribution of the magnetic subsystem is dominant. The anomalous temperature dependence of the magnetostriction during the magnetostructural phase transition (PT) is explained by competition of the processes of growing austenite phase nuclei and the striction processes in them.  相似文献   

2.
The superconducting phase transition in heavy fermion CeCoIn5 (T(c)=2.3 K in zero field) becomes first order when the magnetic field H parallel [001] is greater than 4.7 T, and the transition temperature is below T0 approximately 0.31T(c). The change from second order at lower fields is reflected in strong sharpening of both specific heat and thermal expansion anomalies associated with the phase transition, a strong magnetocaloric effect, and a steplike change in the sample volume. This effect is due to Pauli limiting in a type-II superconductor, and was predicted theoretically in the mid-1960s.  相似文献   

3.
The magnetocaloric effect has been measured in manganites of various chemical compositions in weak alternating magnetic fields. The capabilities of a simple method for measuring the magnetocaloric effect by modulating the magnetic field have been demonstrated. The dependence of the magnetocaloric effect on the temperature, magnetic field, and chemical composition of samples is interpreted.  相似文献   

4.
5.
王芳  沈保根  张健  孙继荣  孟凡斌  李养贤 《中国物理 B》2010,19(6):67501-067501
Magnetic properties and magnetocaloric effect of compound PrFe 12 B 6 are investigated.The coexistence of hard phase PrFe 12 B 6 and soft phase α-Fe causes interesting phenomena on the curves for the temperature dependence of magnetization.PrFe 12 B 6 experiences a first order phase transition at the Curie temperature 200 K,accompanied by an obvious lattice contraction,which in turn results in a large magnetic entropy change.The Maxwell relation fails to give the correct information about magnetic entropy change due to the first order phase transition nature.The large magnetic entropy changes of PrFe 12.3 B 4.7 obtained from heat capacity method are 11.7 and 16.2 J/kg.K for magnetic field changes of 0-2 T and 0-5 T respectively.  相似文献   

6.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

7.
In this paper we study the magnetocaloric effect in transition metals based compounds. For this purpose, we use a microscopical model, based on the band theory of magnetism, where the magnetic lattice is coupled with the crystalline lattice and with the external magnetic field. We apply the model to calculate the magnetocaloric effect in the compound MnAs, which undergoes a first order magnetic phase transition. The theoretically calculated isothermal entropy changes and the adiabatic temperature changes upon magnetic field variation exhibit a good agreement with the available experimental data.Received: 7 April 2004, Published online: 31 August 2004PACS: 75.30.Sg Magnetocaloric effect, magnetic cooling - 75.10.Lp Band and itinerant models - 75.20.En Metals and alloys  相似文献   

8.
The magnetic properties of amorphous and nanocrystalline hard magnetic materials are summarized. The reduction of the “effective” anisotropy field due to exchange coupling in nanocrystalline materials is demonstrated. This leads experimentally as well as theoretically to a remanence enhancement and to a reduced coercivity. Also the domain structure shows the effect of exchange coupling. Nd–Fe–Al is taken as an example of a new “amorphous” hard magnetic material. For magnetostrictive materials the possibility of reducing the anisotropy in nanocrystalline samples without loosening the high magnetostriction is discussed.  相似文献   

9.
《Physics letters. A》2019,383(26):125834
CuFeO2 was synthetized by a solid-state reaction and its low temperature magnetic properties were investigated using the magnetocaloric effect. Magnetic susceptibility measurements show that there are two magnetic transition temperatures at about 16 and 11 K. Measurement of isothermal magnetization curves for different applied magnetic fields near these temperatures show a reversal in the magnetization trend around 16 K, and Arrott plots indicate they are accompanied by second- and first-order magnetic phase transitions, respectively. Both normal and inverse magnetocaloric effects are observed, and the maximum magnetic entropy change is obtained at 11 K.  相似文献   

10.
Single phase Mn5Ge3 ribbons were successfully synthesized by single roller melt-spinning method followed by an annealing procedure at 800 °C for 1 h. The magnetocaloric effect and transition order were investigated by dc magnetization measurement. A maximum entropy change of 4.92 J/kg K and a refrigerant capacity of 201.3 J/kg were observed at an external field change of 30 kOe. The Banerjee criterion was adopted to discriminate the order of the transition, indicating a second order transition. The calculated entropy changes were also obtained by Landau theory, which are in agreement with the experimental values at the temperature region above the Curie temperature. This phenomena implies a potential transition of the magnetic interaction in the vicinity of the Curie temperature. Universal behavior was also indicated in that all of the experimental entropy change curves collapse into one universal curve, which is consistent with the Banerjee criterion.  相似文献   

11.
The resistance of a La1.2Sr1.8Mn2(1–z)O7 single crystal has been studied in magnetic fields from 0 to 90 kOe. The magnetoresistance at temperature T = 75 K, near which a colossal magnetoresistance maximum is observed, has been successfully described in terms of the “spin–polaron” electric conduction mechanism. This value of the colossal magnetoresistance is due to a three-fold increase in the polaron size. The method of separating contributions of various conduction mechanisms to the magnetoresistance developed for materials with activation type of conduction is generalized to compounds in which a metal–insulator transition is observed. It is found that, at a temperature of 75 K, the contribution of the “orientation” mechanism is maximum (≈20%) in a magnetic field of 5 kOe and almost disappears in fields higher than 50 kOe.  相似文献   

12.
A massive magnetic-field-induced structural transformation in Gd5Ge4, which occurs below 30 K, was imaged at the atomic level by uniquely coupling high-resolution x-ray powder diffraction with magnetic fields up to 35 kOe. In addition to uncovering the nature of the magnetic field induced structural transition, our data demonstrate that the giant magnetocaloric effect, observed in low magnetic fields, arises from the amplification of a conventional magnetic entropy-driven mechanism by the difference in the entropies of two phases, borne by the concomitant structural transformation.  相似文献   

13.
Yan Zhang 《中国物理 B》2022,31(7):77501-077501
HoBi single crystal and polycrystalline compounds with NaCl-type structure are successfully obtained, and their magnetic and magnetocaloric properties are studied in detail. With temperature increasing, HoBi compound undergoes two magnetic transitions at 3.7 K and 6 K, respectively. The transition temperature at 6 K is recognized as an antiferromagnetic-to-paramagnetic (AFM-PM) transition, which belongs to the first-order magnetic phase transition (FOMT). It is interesting that the HoBi compound with FOMT exhibits good thermal and magnetic reversibility. Furthermore, a large inverse and normal magnetocaloric effect (MCE) is found in HoBi single crystal in the $H|| [100]$ direction, and the positive $\Delta S_{\rm M}$ peak reaches 13.1 J/kg$\cdot$K under a low field change of 2 T and the negative $\Delta S_{\rm M}$ peak arrives at $-18 $ J/kg$\cdot$K under a field change of 5 T. These excellent properties are expected to be applied to some magnetic refrigerators with special designs and functions.  相似文献   

14.
Polycrystalline binary rare earth intermetallic compound DySi is found to be dimorphic at room temperature (orthorhombic FeB type, space group Pnma, No. 62 and CrB type, space group Cmcm, No. 63). This compound exhibits interesting magnetic properties including an antiferromagnetic transition at ∼38 K (TN) and a low-temperature field-induced transition in a critical field of 65 kOe, at 5 K. The values of magnetic entropy change and adiabatic temperature change near the magnetic transition in DySi have been estimated using the heat capacity data obtained in different applied fields. Negative magnetocaloric effect is observed at temperatures close to and below TN, in fields up to 50 kOe.  相似文献   

15.
Masrour R  Jabar A 《中国物理 B》2016,25(8):87502-087502
The magnetic effect and the magnetocaloric effect in La_2NiMnO_6(LNMO) double perovskite are studied using the Monte Carlo simulations.The magnetizations,specific heat values,and magnetic entropies are obtained for different exchange interactions and external magnetic fields.The adiabatic temperature is obtained.The transition temperature is deduced.The relative cooling power is established with a fixed value of exchange interaction.According to the master curve behaviors for the temperature dependence of △S_m~(max) predicted for different maximum fields,in this work it is confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order.The near room-temperature interaction and the superexchange interaction between Ni and Mn are shown to be due to the ferromagnetism of LNMO.  相似文献   

16.
The isothermal, longitudinal magnetostriction of the spin-Peierls cuprate CuGeO3 has been measured along the three orthorhombic directions up to 14 Tesla by means of a high resolution capacitance dilatometer. For all three axes we observe anomalies at both the dimerized/incommensurate (D/I) and the dimerized/uniform (D/U) transition whose sizes and signs differ. A precise H-T phase diagram is determined from the field and temperature dependence of the lattice constants, which roughly agrees with theoretical predictions. At the D/I transition the magnetostriction shows a jumplike behavior and a hysteresis indicating a first order transition. From the jumps of the magnetostriction at the D/I transition we estimate considerable, uniaxial stress dependences of the critical magnetic field H c, which correlate with those of the spin-Peierls transition temperature. A finite magnetostriction is also resolved within the high temperature uniform phase of CuGeO3 for all three lattice directions. These data show a pronounced, strongly anisotropic spin-lattice coupling in CuGeO3 and allow to derive the uniaxial pressure dependences of the magnetic susceptibility. Based on our findings the relevance of different structural parameters for the magnetic exchange interaction is discussed.  相似文献   

17.
The La1−xCexMn2Si2 compounds (x=0.35 and 0.45) exhibit an antiferromagnetic-ferromagnetic transition caused by the changes in distance between Mn atoms due to temperature changes. A field-induced transition from antiferromagnetic state to ferromagnetic state at a critical field, which decreases with increase in temperature, can also be induced by applying a magnetic field. In this paper our aim is to study the magnetization and magnetocaloric effect, close to transition temperatures. Our subsidiary aim is to examine the temperature dependence of critical field and ferromagnetic fraction of compounds. The variation of magnetocaloric effect with temperature is correlated with the ferromagnetic-antiferromagnetic phase coexistence. Our final aim is to examine the harmony between magnetocaloric effect values calculated both by the Maxwell theory and by the Landau theory.  相似文献   

18.
Within the phenomenological model of the interacting parameters of magnetic and structural orders, magnetic and structural transitions in magnetocaloric alloys of the Mn1–x Cr x NiGe system are analyzed. Based on the calculated isobaric temperature dependences of the parameters of magnetic and structural orders, a magnetic susceptibility jump in the first-order structural transition region is predicted and confirmed experimentally; the change in the magnetic ordering type during the approach of magnetic and structural transitions is justified. The change in the phase transition type during the reverse change in the temperature and magnetic field, which is observed in a number of samples of the system under study, is explained. The efficiency of the use of the transitions induced by the magnetic field in magnetocaloric applications is analyzed.  相似文献   

19.
Magnetic and heat capacity measurements have been carried out on the polycrystalline sample of DyNi, which crystallizes in the orthorhombic FeB structure (space group Pnma). This compound is ferromagnetic with a Curie temperature of 59 K. Magnetization-field isotherms at low temperatures show a multi-step behavior characteristic of metamagnetic transitions. The magnetocaloric effect has been measured both in terms of isothermal magnetic entropy change and adiabatic temperature change for various applied magnetic fields. The maximum values of the entropy change and the temperature change are found to be 19 J kg−1 K−1 and 4.5 K, respectively, for a field of 60 kOe. The large magnetocaloric effect is attributed to the field-induced spin-flop metamagnetism occurring in this compound, which has a noncollinear magnetic structure at low fields.  相似文献   

20.
In single-crystal La0.7Ba0.3MnO3, giant volume magnetostriction was observed for the first time to reach 2.54 × 10?4 at room temperature and a still larger level of 4 × 10?4 at the Curie point T C = 310 K in a magnetic field of 8.2 kOe. At the same temperatures and magnetic field, this effect is complemented by a colossal magnetoresistance of 15.2 and 22.7%, respectively. The volume magnetostriction ω and magnetoresistance Δρ/ρ follow similar patterns in the proximity of T C; namely, ω and Δρ/ρ are negative, maxima are observed in the |ω|(T) and |Δρ/ρ|(T) curves, and the ω and Δρ/ρ isotherms do not saturate in the highest fields applied. These phenomena are assigned to the fact that, in the above composition, there exists a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s–d exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号