首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
6.
From the standpoint of physical mesomechanics, we have investigated plastic deformation mechanisms and the mechanical properties of partially crystalline polyethylene. We show that from the very beginning, plastic deformation occurs at the mesoscopic level. Fracture is preceded by fragmentation of the material. The observed stages of the process of plastic deformation of polyethylene are qualitatively similar to the stages of this process for metallic materials. The effect of electron bombardment on the mechanical properties of polyethylene is explained by the size reduction in the mesoscopic substructure formed on plastic deformation. Tomsk Polytechnical University. Zhilin University, People’s Republic of China. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 48–53, January, 1997.  相似文献   

7.
非晶合金的塑性变形机理一直是材料科学和凝聚态物理研究的热点问题之一.文章简单介绍了近来中国科学院物理研究所在非晶合金塑性机理研究方面的最新进展,介绍了玻璃转变和塑性变形机制之间的关联性及最新的实验证据,以及从非平衡态统计力学角度对非晶塑性变形机制的理解,指出非晶合金的塑性和剪切带的动力学状态密切相关,发现韧性非晶合金在变形过程中可以演化到自组织临界状态.这对认识非晶合金的形成本质,探索具有实际应用价值的非晶合金具有重要意义.  相似文献   

8.
The paper substantiates the concept of physical mesomechanics that the basis for nonlinear behavior of solids under plastic deformation and fracture is the formation of nanostructural states in local highly nonequilibrium zones. Their structural transformations and two-phase decay govern the generation of strain-induced defects and cracks. Nonlinear wave mechanisms of nanostructural states influence on plastic deformation and fracture are discussed.  相似文献   

9.
A model is developed for the plastic deformation of nanocrystalline materials in terms of the evolution of a spatial grid of disclinations located at the triple junctions of grains. Plastic deformation takes place as the result of plastic rotation of grains, the mismatch of whose rotations causes the nucleation of partial disclinations at the junctions of intergrain boundaries. It is shown that the distinctive feature of the mechanical behavior of nanocrystals is a deviation from the Hall-Petch law up to a critical grain size D cr⩽25 nm. Fiz. Tverd. Tela (St. Petersburg) 39, 2023–2028 (November 1997)  相似文献   

10.
孙保安  汪卫华 《物理》2010,39(09):628-630
非晶合金的塑性变形机理一直是材料科学和凝聚态物理研究的热点问题之一.文章简单介绍了近来中国科学院物理研究所在非晶合金塑性机理研究方面的最新进展,介绍了玻璃转变和塑性变形机制之间的关联性及最新的实验证据,以及从非平衡态统计力学角度对非晶塑性变形机制的理解,指出非晶合金的塑性和剪切带的动力学状态密切相关,发现韧性非晶合金在变形过程中可以演化到自组织临界状态.这对认识非晶合金的形成本质,探索具有实际应用价值的非晶合金具有重要意义.  相似文献   

11.
We discuss theoretically a mechanism of violation of the Arrhenius law for the rate of plastic deformation, on the one hand, and of the appearance of plateau-like segments in the temperature dependence of the thermal-activation parameters, on the other, during deformation of crystals at low (<10 K) temperatures, which is associated with heating of the crystal by slip lines and bands. Via a self-consistent solution of the heat-conduction equation with allowance for variation of its coefficients and the rate of plastic deformation with temperature it is found that both a stable and an unstable regime (in the thermal sense) of propagation of slip lines and expansion of slip bands are possible depending on the ratio between the heating level and the level of strain hardening of the strain localization sites. The first regime is associated with the appearance of quasi-athermic plateaus in the temperature dependences of the thermally-activation parameters, and the second one leads to an instability (stepped) in the plastic deformation that is characteristic at low temperatures. Fiz. Tverd. Tela (St. Petersburg) 40, 1479–1485 (August 1998)  相似文献   

12.
13.
The stress-strain curve of a polycrystalline duralumine (D1) is studied to find three basic deformation stages: linear hardening, parabolic hardening (n = 1/2), and prefracture (n < 1/2). The results obtained show special features of macrolocalization of the plastic flow of the alloy under review. The distribution patterns of localized plastic flow domains develop according to deformation stages. The prefracture stage is characterized by self-correlated motion of the domains to the point of subsequent fracture. It follows from an analysis of the plastic flow localization kinetics that both hardening and softening domains coexist in the specimen in the prefracture stage. The domains move with a constant velocity inherent to each of them and linearly dependent on the position of their nucleation point. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 68–73, November, 2007.  相似文献   

14.
The scaling of the amplitude and time distributions of acoustic emission pulses, which reflects the self-similarity of defect structures, is revealed. The possibility of separation of independent contributions to the flow of acoustic emission events, which have substantially different scaling exponents, is shown for porous materials. The differences in the scaling exponents are related to the development of plastic deformation and fracture of the materials. The developed approach to an analysis of acoustic emission can be used to describe its predominant mechanisms during deformation.  相似文献   

15.
Post mortem analysis of fracture surfaces of ductile and brittle materials on the microm-mm and the nm scales, respectively, reveal self-affine cracks with anomalous scaling exponent zeta approximately 0.8 in three dimensions and zeta approximately 0.65 in two dimensions. Attempts to use elasticity theory to explain this result failed, yielding exponent zeta approximately 0.5 up to logarithms. We show that when the cracks propagate via plastic void formations in front of the tip, followed by void coalescence, the void positions are positively correlated to yield exponents higher than 0.5.  相似文献   

16.
17.
Relations have been derived here between the macroscopic characteristics of liquid metal embrittlement (durability c under creep and strain c prior to rupture under tension) and the parameters which characterize the micromechanism of fracture (surface energy at the crystal bath interface, energy of grain boundaries, temperature, structure of the crystal-bath interface, etc.), on the basis of test data indicating that the subcritical stage of microcrack development governs the fracture process, and on the assumption that transition to supercritical fracture occurs when the crack angle at the tip opens to its critical width c. It is also shown here that, as the rate of subcritical crack development changes by three orders of magnitude, the magnitude of the critical angle c changes only by a factor of 3.0 and may, to the first approximation, be regarded as independent of the bath composition. The values of c and c calculated according to this approximation agree closely enough with values based on tests.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 22–29, July, 1976.  相似文献   

18.
19.
项延训  朱武军  邓明晰  轩福贞 《中国物理 B》2016,25(2):24303-024303
The experimental measurements and numerical simulations are performed to study ultrasonic nonlinear responses from the plastic deformation in weld joints. The ultrasonic nonlinear signals are measured in the plastic deformed30Cr2Ni4 Mo V specimens, and the results show that the nonlinear parameter monotonically increases with the plastic strain, and that the variation of nonlinear parameter in the weld region is maximal compared with those in the heat-affected zone and base regions. Microscopic images relating to the microstructure evolution of the weld region are studied to reveal that the change of nonlinear parameter is mainly attributed to dislocation evolutions in the process of plastic deformation loading. Meanwhile, the finite element model is developed to investigate nonlinear behaviors of ultrasonic waves propagating in a plastic deformed material based on the nonlinear stress–strain constitutive relationship in a medium. Moreover, a pinned string model is adopted to simulate dislocation evolution during plastic damages. The simulation and experimental results show that they are in good consistency with each other, and reveal a rising acoustic nonlinearity due to the variations of dislocation length and density and the resulting stress concentration.  相似文献   

20.
Mold-free micro forming using a fs laser was investigated by producing micro pits on pure aluminum foil. The characteristics of the pit profiles, their forming mechanisms, and the influences of some important parameters on the pit profiles were investigated by measuring the profiles and the surface morphologies of the pits. The microstructures of the shocked aluminum foil were observed through transmission electron microscopy (TEM). Pits obtained through fs laser shock forming are composed of two regions: the directly impacted region and the plastically bending region. Diameters of the former strongly depend on laser beam sizes. The plastically bending region has a negative effect on forming precision. Shorter laser pulse width is beneficial for narrowing the range of the plastically bending region and enhancing the forming precision. Using a single-side clamping mode can also narrow the plastically bending region through buffering the local bending. Fs laser-induced microstructures are characteristic of fragmentary short dislocation lines and parallel slip lines, which are the results of the ultrafast and ultrahigh pressure loading. The localization of the fs laser shock forming induced by ultrafast loading can enhance the precision of mold-free forming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号