首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

2.
Complex permittivity ε*/ε0 = ε′/ε0iε″/ε0 of the bismuth–lanthanum manganite Bi0.6La0.4MnO3 ceramics has been measured in the temperature range of 10–220 K at frequencies f = 20–106 Hz and magnetic inductions B = 0–0.846 T. At a temperature of 80 K, the spectra ε′/ε0(t) and ε″/ε0(t) demonstrate the dielectric relaxation that is a superposition of contributions of several relaxation processes, each of which is dominant in its frequency range: I (f < 103 Hz, II (103 < f < 105 Hz), and III (105 < f < 106 Hz). In the range of 10–120 K, anomalous behavior of ε′/ε0(T) and ε″/ε0(T) is observed near the temperature of the transition from the paramagnetic to ferromagnetic phase and is due to the Anderson localization of charge carrier on a spin disorder.  相似文献   

3.
The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm?1 < E T < 24500 cm?1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s?1 Torr?1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.  相似文献   

4.
Resistivity (ρ), thermal conductivity (k) and Seebeck coefficient (S) of La1–xCexB6 single crystals with various concentrations of cerium Ce ions was measured in a wide temperature range 3?300 K. The obtained data were analyzed in the framework of the Coqblin–Shrieffer model. The contributions of scattering of carriers on magnetic ions Ce for all transport parameters ρ(T), k(T), S(T) are revealed. Strong dependence of the magnetic scattering on concentration of the cerium ions are identified. The anomalous behavior of the transport parameters ρ(T), k(T), S(T) in the region near 30 K is attributed to the Δ ~ 30 K splitting of Г8 level.  相似文献   

5.
The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature (T?>?T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T?<<?n 0 g B E p ?<<?k B T (n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as \( {\tau}_{dd12}^{-1}\propto {e}^{-E/{k}_BT} \) and τ c12?∝?T ?5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T ?3 behavior of the thermal conductivity. In the low-temperature limit, k B T?<<?n 0 g B , E p ?>>?k B T, since the relaxation rate \( {\tau}_{c12}^{-1} \) is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit (k B T?>?n 0 g B ) and low momenta, the relaxation rates \( {\tau}_{c12}^{-1} \) and \( {\tau}_{dd12}^{-1} \) change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.  相似文献   

6.
This study continues the experimental testing of the validity of the inductive resonance theory of dipole-dipole energy transfer from the T 1S 0 transition dipole to stretching vibrations of intramolecular CH bonds of naphthalene and its hydroxy derivatives. To this end, in the series of compounds under study, the range of variation of the geometrical parameter [Φ(CH)]2 of the Förster theory, which accounts for the mutual orientation of the energy donor and acceptor, is estimated. Preliminarily, the angles between the transition dipole moments of the radiative and absorptive electronic transitions (T 1S 0 and S 0S 1; T 1S 0 and S 0S 2; S 1S 0 and S 0S 1; and S 1S 0 and S 0S 2) are measured at 77 K by the method of polarization photoselection. From the polarization measurements, the angles between the phosphorescence transition dipole moment and the plane of a molecule are determined. It was found that, upon passage from naphthalene to its β derivatives, the orientation of the dipole moment of the radiative T 1S 0 transition relative to the plane of a molecule markedly changes, with the in-plane component of the dipole moment being increased by an order of magnitude. The experimentally determined rate constants of nonradiative deactivation of the T 1 state averaged over the CH groups of the naphthalene ring system, k nr(CH), are compared with the rate constants [Φ(CH)]2 of the inductive resonance energy transfer from the dipole of the T 1S 0 transition to the dipole of the CH vibrations polarized in the plane of a molecule, calculated with regard to the orientational factor [Φ(CH)]2. This comparison showed that, in the series of compounds under study, a change in the orientation of the dipole moment of the radiative T 1S 0 transition relative to the plane of a molecule does not affect the rate of the nonradiative T 1?S 0 transition. This inference is confirmed by the absence of a correlation between the rate constants k dd(CH) calculated by us (with regard to [Φ(CH)]2) and the well-known rate constants k nr(CH) of individual sublevels of the T 1 state measured at T≤1.35 K for a number of organic molecules. The possible sources of discrepancy between the experimental data that k nr(CH) is independent of [Φ(CH)]2 and the predictions of the theory are considered. A conclusion is made that the electronic-vibrational energy transfer between electric dipoles is the most probable mechanism of the T 1?S 0 transitions, but the rate constant of the dipole-dipole energy transfer upon interaction of the electronic and vibrational dipoles in a molecule does not depend on their orientations.  相似文献   

7.
The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.  相似文献   

8.
The theory of the interaction of electrons with a high-frequency electric field in one-dimensional two-barrier nanostructures with symmetric barriers of finite height and widths was developed. An exact solution to the Schrödinger equation was found for electrons in this nanostructure in the absence of high-frequency electric field. An analytical expression for the direct current I 0 induced in this structure by an incident electron flux with energy ε differing slightly from the resonant level energy ε r (|ε ? ε r | << ε r ) was derived. In the small-signal approximation, the active (field-phased) component I c of the alternating electric current was calculated. At ε > ε r , the current I c is negative in the entire frequency range, which suggests the possibility of ac electric field amplification and generation in the two-barrier resonant-tunneling structure with the barriers of finite height and width. Within the applicability of the theory (?ω << ε r ), the frequency at which amplification and generation of the ac electric field are possible reaches ω ? 1013 s ?1; the power transferred by electrons to the field is ~1 W/cm2.  相似文献   

9.
The deep-inelastic production of J/ψ mesons in electron-proton interactions at the HERA collider is considered within the semihard (kT-factorization) QCD approach and within the color-singlet model. The dependence of the Q2, p T 2 , z, y* and W distributions of J/ψ mesons on various sets of unintegrated gluon distributions and the dependence of the spin parameter α on p T 2 and Q2 are investigated. The results of the calculations are compared with the latest experimental data obtained by the H1 and ZEUS Collaborations at the HERA collider. It is shown that experimental investigations of the polarization properties of J/ψ mesons over the kinematical region Q2<1 GeV2 may provide an additional test of the statement that the dynamics of gluon distributions is governed by the Balitsky-Fadin-Kuraev-Lipatov equations.  相似文献   

10.
The transition dipole moments P 0n s for the transitions from the electronic triplet state 3 B 2(ππ*) to vibrational sublevels of the vibrational out-of-plane modes n of the carbazole and dibenzofuran molecules are calculated. The values of the radiative deactivation rate constant k rad s of the triplet sublevels T s are determined along with the components k SO s and k VSO s of this constant, which depend on the intramolecular spin-orbit (SO) and vibronic-spin-orbit (VSO) interaction. It is ascertained that k rad z > k rad y . For different structural units of the molecules (the heteroatom and the carbon atoms of the dibenzene fragment), the effect of the SO coupling on the constant k VSO~Σs, n (P 0n s )2 is studied. A competition between the effects on k VSO from the SO coupling in the carbon atoms and in the light N and O heteroatoms is revealed. This competition accounts for the weak influence of the heteroatom on this component of the rate constant k rad in these molecules. It is ascertained that the intensity distribution among the vibronic lines in the phosphorescence spectra of carbazole and dibenzofuran I 0n ~Σs (P 0n s )2 is different due to the substantially different influence of the N and O heteroatoms on the deactivation of the triplet sublevel T y .  相似文献   

11.
Multiferroic BiFe1?xZn x O3 ceramics were prepared by solution combustion method. Their structure, magnetoelectric, dielectric, magnetic, thermal characteristics were studied. The magnetic M(T) and heat capacity C p (T) measurements demonstrate an antiferromagnetic to paramagnetic phase transition (T N ) around 635 K. The anomaly on the temperature dependence of the dielectric constant near T N was observed, which could be induced by the magnetoelectric coupling between electric and magnetic ordering. The magnetoelectric behavior was also confirmed by the linear relation between Δε and M2, which is in the agreement of the Ginzburg-Landau theory for the second-order phase transition.  相似文献   

12.
13.
Dielectric relaxation studies of binary (jk) polar mixtures of tetrahydrofuran with N-methyl acetamide, N,N-dimethyl acetamide, N-methyl formamide and N,N-dimethyl formamide dissolved in benzene(i) for different weight fractions (w j k ’s) of the polar solutes and mole fractions (x j ’s) of tetrahydrofuran at 25 °C are attempted by measuring the conductivity of the solution under 9.90 GHz electric field using Debye theory. The estimated relaxation time (τ j k ’s) and dipole moment (μ j k ’s) agree well with the reported values signifying the validity of the proposed methods. Structural and associational aspects are predicted from the plot of τ j k and μ j k against x j of tetrahydrofuran to arrive at solute–solute (dimer) molecular association upto x j =0.3 of tetrahydrofuran and thereafter solute–solvent (monomer) molecular association upto x j =1.0 for all systems except tetrahydrofuran + N,N-dimethyl acetamide.  相似文献   

14.
We consider fluctuations of the solution W ε (t, x, k) of the Wigner equation which describes energy evolution of a solution of the Schrödinger equation with a random white noise in time potential. The expectation of W ε (t, x, k) converges as ε → 0 to \({\bar{W}(t,x,k)}\) which satisfies the radiative transport equation. We prove that when the initial data is singular in the x variable, that is, W ε (0, x, k) = δ(x)f(k) and \({f\in {\mathcal{S}}(\mathbb{R}^d)}\), then the laws of the rescaled fluctuation \({Z_\varepsilon(t):=\varepsilon^{-1/2}[W_\varepsilon(t,x,k)-\bar{W}(t,x,k)]}\) converge, as ε → 0+, to the solution of the same radiative transport equation but with a random initial data. This complements the result of [6], where the limit of the covariance function has been considered.  相似文献   

15.
The anomalous behavior of the isochoric heat capacity of a mixture of methane, pentane and heptane is studied experimentally in the vicinity of the liquid-vapor critical point in the cases when (a) the critical temperature T c approaches the tricritical point T TCP and (b) the critical temperature approaches the upper critical end point T U . It is shown that in all cases, the singular part of the heat capacity of the mixture has the form Csing=A¦τ¦, where τ=(T ? T c )/T c and α≈0.11. When T c T U , amplitude A of the heat capacity anomaly is found to be approximately constant. At the same time, the amplitude of the anomaly tends to zero in the vicinity of the tricritical point: A∝¦τc¦ε, where τc=(T c ? T TCP )/T TCP and ε=1.6?1.7. The inevitable vanishing of this mode of the heat capacity anomaly leads to a negative value of the critical index \(\tilde \alpha\) characterizing the heat capacity anomaly at the tricritical point, while the tricritical point theory and the isomorphism hypothesis predict \(\tilde \alpha = 0.5\).  相似文献   

16.
In QCD, the strengths of the large scale temperature dependent chromomagnetic, B3, B8, and usual magnetic, H fields spontaneously generated in quark-gluon plasma after the deconfinement phase transition (DPT), are estimated. The consistent at high temperature effective potential accounting for the oneloop plus daisy diagrams is used. The heavy ion collisions at the LHC and temperatures T not much higher than the phase transition temperature Td are considered. The critical temperature for the magnetized plasma is found to be Td (H) ~ 110–120 MeV. This is essentially lower compared to the zero field value Td (H=0) ~ 160–180 MeV usually discussed in the literature. Due to contribution of quarks, the color magnetic fields act as the sources generating H. The strengths of the fields are B3(T), B8(T) ~ 1018–1019 G, H(T) ~ 1016–1017 G for temperatures T ~ 160–220 MeV. At temperatures T < 110–120 MeV the effective potential minimum value being negative approaches to zero. This is signaling the absence of the background fields and color confinement.  相似文献   

17.
The effect of (I) S 1(1 B 2u ) ? T 1(3 B 1u ) and (II) S 1 ? T 2 (3 B 3g ) ? T 1 transitions in naphthalene on the rate constant K ST s of the S 1 ? T 1 nonradiative transitions to all triplet sublevels s = z, y, x of the T 1 state has been investigated in the approximation of vibronically induced spin-orbit couplings, taking into account all out-of-plane vibrational modes. The shapes of the vibrational modes that are most active in these transitions are determined. The calculated values K ST = (0.33–0.75) × 107 s?1, obtained with allowance for the I and I + II transitions, are consistent with the experimental values (K ST)exp found by different researchers. It is established in all calculation versions that K ST > K ST z > k ST x . This relation is in qualitative agreement with the known magnetooptical data.  相似文献   

18.
We investigate the linear thermoelectric response of an interacting quantum dot side-coupled by one of two Majorana modes hosted by a topological superconducting wire. We employ the numerical renormalization group technique to obtain the thermoelectrical conductance L in the Kondo regime while the background temperature T, the Majorana-dot coupling Γ m , and the overlap ε m between the two Majorana modes are tuned. We distinguish two transport regimes in which L displays different features: the weak- (Γ m <T K ) and strong-coupling (Γ m >T K ) regimes, where T K is the Kondo temperature. For an infinitely long nanowire where the Majorana modes do not overlap (ε m = 0), the thermoelectrical conductance in the weak-coupling regime exhibits a peak at T ~ Γ m <T K . This peak is ascribed to the anti-Fano resonance between the asymmetric Kondo resonance and the zero-energy Majorana bound state. In the strong-coupling regime, on the other hand, the Kondo-induced peak in L is affected by the induced Zeeman splitting in the dot. For finite but small overlap (0 <ε m <Γ m ), the interference between the two Majorana modes restores the Kondo effect in a smaller energy scale Γ′ m and gives rise to an additional peak in Γ ~ Γ′ m, whose sign is opposite to that at T ~ Γ m . In the strong-coupling regime this additional peak can cause a non-monotonic behavior of L with respect to the dot gate. Finally, in order to identify the fingerprint of Majorana physics, we compare the Majorana case with its counterpart in which the Majorana bound states are replaced by a (spin-polarized) ordinary bound state and find that the thermoelectric features for finite ε m are the genuine effect of the Majorana physics.  相似文献   

19.
The inelastic photo-and electroproduction of J/ψ mesons at the HERA collider are considered within the semihard (k T -factorization) QCD approach and the color-singlet model. The total, differential, and double-differential cross sections for the inelastic production of J/ψ mesons are investigated versus the Pomeron intercept Δ, which is the basic parameter of low-x physics; also studied here is the spin alignment parameter α versus the square of the transverse momentum, p ψT 2 , and the variable z. The theoretical results obtained in the present study are compared with the latest experimental data of the H1 and ZEUS Collaborations. It is shown that experimental investigations of the polarization properties of J/ψ mesons at the HERA collider for Q2<1 GeV2 may provide an additional test of the Balitsky-Fadin-Kuraev-Lipatov dynamics of gluon distributions.  相似文献   

20.
On the basis of the k T -factorization approach, heavy-quarkonium \((c\bar c,b\bar b)\) hadroproduction at high energies is considered within nonrelativistic QCD in the leading order in α s and v. The p T spectra of various S-and P-wave quarkonium states at the Tevatron collider energies (run I and run II) are fitted, and sets of octet nonperturbative matrix elements are obtained for three different versions of the noncollinear gluon distribution in the proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号