首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

2.
Recent experimental and theoretical studies have proposed that enzymes involve networks of coupled residues throughout the protein that participate in motions accompanying chemical barrier crossing. Here, we have examined portions of a proposed network in dihydrofolate reductase (DHFR) using quantum mechanics/molecular mechanics simulations. The simulations use a hybrid quantum mechanics‐molecular mechanics approach with a recently developed semiempirical AM1‐SRP Hamiltonian that provides accurate results for this reaction. The simulations reproduce experimentally determined catalytic rates for the wild type and distant mutants of E. coli DHFR, underscoring the accuracy of the simulation protocol. Additionally, the simulations provide detailed insight into how residues remote from the active site affect the catalyzed chemistry, through changes in the thermally averaged properties along the reaction coordinate. The mutations do not greatly affect the structure of the transition state near the bond activation, but we observe differences somewhat removed from the point of C? H cleavage that affect the rate. The mutations have global effects on the thermally averaged structure that propagate throughout the enzyme and the current simulations highlight several interactions that appear to be particularly important. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The H/D primary kinetic isotope effect (KIE) for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) is calculated as a function of temperature employing ensemble-averaged variational transition-state theory with multidimensional tunneling. The calculated KIEs display only a small temperature dependence over the temperature range of 5 to 45 degrees C. We identify two key features that contribute to canceling most of the temperature dependence of the KIE that would be expected on the basis of simpler models. Related issues such as the isotope effects on Arrhenius preexponential factors, large differences between free energies of activation and Arrhenius activation energy, and fluctuations of effective barriers are also discussed.  相似文献   

4.
The transition state structure for the hydride transfer in dihydrofolate reductase, DHFR, enzyme has been calculated with analytical gradients at semiempirical levels: AM1 and PM3. The geometry, electronic structure and transition vector components are qualitatively semiempirical level independent. Comparing the transition structures for the hydride transfer step in models of liver alcohol dehydrogenase, formate dehydrogenase, lactate dehydrogenase, and glutathione reductase, the geometries of these stationary points are transferable and invariant. The topology of the transition structures in these enzymes resembles the one calculated in this paper.  相似文献   

5.
Dihydrofolate Reductase (DHFR) catalyzes the reduction of dihydrofolate (H2F) to tetrahydrofolate. On the basis of 10-12.5 ns molecular dynamics simulations of two conformations (closed and occluded) of the ternary DHFR/NADPH/H2F complex from Escherichia coli and a free energy perturbation approach, we have calculated the pKa value for the N5 atom in H2F. Our results suggest that the N5 atom in H2F is responsible for the pH dependency of the catalyzed reaction, meaning that DHFR facilitates protonation of H2F by approximately 4 pKa units. The mechanism behind this increase is due to favorable electrostatic interactions between the Asp27 residue and a proton at the N5 atom. The electrostatic interactions are enhanced by a hydrophobic active site, which to a large extent is made hydrophobic by the M20 loop in DHFR. Moreover, we find that the conformation imposed on H2F by DHFR to some extent also favors protonation of the N5 atom. Our results add support to previous findings and suggestions by Callender and co-workers [e.g., Deng, J.; Callender, R. J. Am. Chem. Soc. 1998, 120, 7730-7737] and explain why mutation of Asp27 may lead to severely reduced activity at neutral pH.  相似文献   

6.
A significant contemporary question in enzymology involves the role of protein dynamics and hydrogen tunneling in enhancing enzyme catalyzed reactions. Here, we report a correlation between the donor-acceptor distance (DAD) distribution and intrinsic kinetic isotope effects (KIEs) for the dihydrofolate reductase (DHFR) catalyzed reaction. This study compares the nature of the hydride-transfer step for a series of active-site mutants, where the size of a side chain that modulates the DAD (I14 in E. coli DHFR) is systematically reduced (I14V, I14A, and I14G). The contributions of the DAD and its dynamics to the hydride-transfer step were examined by the temperature dependence of intrinsic KIEs, hydride-transfer rates, activation parameters, and classical molecular dynamics (MD) simulations. Results are interpreted within the framework of the Marcus-like model where the increase in the temperature dependence of KIEs arises as a direct consequence of the deviation of the DAD from its distribution in the wild type enzyme. Classical MD simulations suggest new populations with larger average DADs, as well as broader distributions, and a reduction in the population of the reactive conformers correlated with the decrease in the size of the hydrophobic residue. The more flexible active site in the mutants required more substantial thermally activated motions for effective H-tunneling, consistent with the hypothesis that the role of the hydrophobic side chain of I14 is to restrict the distribution and dynamics of the DAD and thus assist the hydride-transfer. These studies establish relationships between the distribution of DADs, the hydride-transfer rates, and the DAD's rearrangement toward tunneling-ready states. This structure-function correlation shall assist in the interpretation of the temperature dependence of KIEs caused by mutants far from the active site in this and other enzymes, and may apply generally to C-H→C transfer reactions.  相似文献   

7.
The cleavage of a substrate protein by HIV-1 protease has been monitored in real time by the use of a dihydrofolate reductase fusion protein in which a fluorescence donor and a fluorescence acceptor were introduced into sites flanking the HIV-1 protease cleavage site. The amino acids 7-azatryptophan and dabcyl-1,2-diaminopropionic acid were introduced into specific sites of the DHFR fusion protein in an in vitro protein biosynthesizing system using two misacylated suppressor tRNAs, each of which recognized a specific, unique codon introduced into the mRNA. Excitation of the fluorescence acceptor in the initially expressed protein afforded no light production, consistent with quenching by fluorescence resonance energy transfer. Treatment of the elaborated protein with HIV-1 protease cleaved the protein between the fluorescence donor and acceptor, affording a time-dependent increase in fluorescence that was equal in magnitude to that produced by admixture of a stoichiometric amount of free 7-azatryptophan to the solution containing the intact protein.  相似文献   

8.
9.
Constraining a single motion between distal residues separated by approximately 28 A in hybrid quantum/classical molecular dynamics simulations is found to increase the free energy barrier for hydride transfer in dihydrofolate reductase by approximately 3 kcal/mol. Our analysis indicates that a single distal constraint alters equilibrium motions throughout the enzyme on a wide range of time scales. This alteration of the conformational sampling of the entire system is sufficient to significantly increase the free energy barrier and decrease the rate of hydride transfer. Despite the changes in conformational sampling introduced by the constraint, the system assumes a similar transition state conformation with a donor-acceptor distance of approximately 2.72 A to enable the hydride transfer reaction. The modified thermal sampling leads to a substantial increase in the average donor-acceptor distance for the reactant state, however, thereby decreasing the probability of sampling the transition state conformations with the shorter distances required for hydride transfer. These simulations indicate that fast thermal fluctuations of the enzyme, substrate, and cofactor lead to conformational sampling of configurations that facilitate hydride transfer. The fast thermal motions are in equilibrium as the reaction progresses along the collective reaction coordinate, and the overall average equilibrium conformational changes occur on the slower time scale measured experimentally. Recent single molecule experiments suggest that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time scale of the hydride transfer reaction. Thus, introducing a constraint that modifies the conformational sampling of an enzyme could significantly impact its catalytic activity.  相似文献   

10.
Much effort has been directed toward understanding the contributions of electrostatics and dynamics to protein function and especially to enzyme catalysis. Unfortunately, these studies have been limited by the absence of direct experimental probes. We have been developing the use of carbon-deuterium bonds as probes of proteins and now report the application of the technique to the enzyme dihydrofolate reductase, which catalyzes a hydride transfer and has served as a paradigm for biological catalysis. We observe that the stretching absorption frequency of (methyl- d 3) methionine carbon-deuterium bonds shows an approximately linear dependence on solvent dielectric. Solvent and computational studies support the empirical interpretation of the stretching frequency in terms of local polarity. To begin to explore the use of this technique to study enzyme function and mechanism, we report a preliminary analysis of (methyl- d 3) methionine residues within dihydrofolate reductase. Specifically, we characterize the IR absorptions at Met16 and Met20, within the catalytically important Met20 loop, and Met42, which is located within the hydrophobic core of the enzyme. The results confirm the sensitivity of the carbon-deuterium bonds to their local protein environment, demonstrate that dihydrofolate reductase is electrostatically and dynamically heterogeneous, and lay the foundation for the direct characterization protein electrostatics and dynamics and, potentially, their contribution to catalysis.  相似文献   

11.
The temperature dependence of the primary kinetic isotope effect (KIE), combined temperature-pressure studies of the primary KIE, and studies of the alpha-secondary KIE previously led us to infer that hydride transfer from nicotinamide adenine dinucleotide to flavin mononucleotide in morphinone reductase proceeds via environmentally coupled hydride tunneling. We present here a computational analysis of this hydride transfer reaction using QM/MM molecular dynamics simulations and variational transition-state theory calculations. Our calculated primary and secondary KIEs are in good agreement with the corresponding experimental values. Although the experimentally observed KIE lies below the semiclassical limit, our calculations suggest that approximately 99% of the reaction proceeds via tunneling: this is the first "deep tunneling" reaction observed for hydride transfer. We also show that the dominant tunneling mechanism is controlled by the isotope at the primary rather than the secondary position: with protium in the primary position, large-curvature tunneling dominates, whereas with deuterium in this position, small-curvature tunneling dominates. Also, our study is consistent with tunneling being preceded by reorganization: in the reactant, the rings of the nicotinamide and isoalloxazine moieties are stacked roughly parallel to each other, and as the system moves toward a "tunneling-ready" configuration, the nicotinamide ring rotates to become almost perpendicular to the isoalloxazine ring.  相似文献   

12.
Summary R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand–ligand and ligand–protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.  相似文献   

13.
Hybrid quantum-classical molecular dynamics simulations of a mutant Escherichia coli dihydrofolate reductase enzyme are presented. Although residue 121 is on the exterior of the enzyme, experimental studies have shown that the mutation of Gly-121 to valine reduces the rate of hydride transfer by a factor of 163. The simulations indicate that the decrease in the hydride transfer rate for the G121V mutant is due to an increase in the free energy barrier. The calculated free energy barrier is higher for the mutant than for the wild-type enzyme by an amount that is consistent with the experimentally observed rate reduction. The calculated transmission coefficients are comparable for the wild-type and mutant enzymes. The simulations suggest that this mutation may interrupt a network of coupled promoting motions proposed to play an important role in DHFR catalysis. This phenomenon has broad implications for protein engineering and drug design.  相似文献   

14.
15.
Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR.  相似文献   

16.
通过胶束电动毛细管电泳法研究分离二氢叶酸还原酶体系中二氢叶酸、四氢叶酸、 NADP、 NADPH和酶5种组分,在含0.002%Brij-35的pH 9.18 50 mmol/L 的硼砂缓冲溶液中,5种组分在18min内得到基线分离.通过对其产物四氢叶酸峰面积的定量测定,计算出二氢叶酸还原酶的米氏常数,建立了毛细管电泳法对二氢叶酸还原酶活力的测定方法.  相似文献   

17.
H-transfer was studied in the complex kinetic cascade of dihydrofolate reductase. Intrinsic kinetic isotope effects, their temperature dependence, and other temperature-dependent parameters indicated H-tunneling, but no 1 degrees to 2 degrees coupled motion. The data also suggested environmentally coupled tunneling and commitment to catalysis on pre-steady-state isotope effects.  相似文献   

18.
《Tetrahedron》1986,42(4):1071-1077
(A) Adamantane and several of its derivates have been found to catalyze intermolecular hydride transfer reactions. They function under a range of conditions from aprotic solutions of aluminum bromide in methylbromide to sulfuric acid.  相似文献   

19.
The charge transfer (CT) band at 695 nm in the spectrum of ferri-cytochrome c is highly asymmetric, indicating conformational heterogeneity due to the coexistence of different conformational substates. We have measured the respective band profile of horse heart ferri-cytochrome c as a function of temperature between 283 K (10 degrees C) and 333 K (60 degrees C) and found that the well-known decrease of the absorptivity is wavenumber-dependent and exhibits a biphasic behavior. This indicates that the underlying conformational substates differ in their thermodynamic stability with respect to the structural changes associated with the disappearance of the 695 nm band, which eventually (at high temperatures) involves the replacement of M80 by a nearby lysine residue. Our data further indicates that the thermal unfolding process involves two structurally different intermediate states.  相似文献   

20.
Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima has been studied by stopped flow spectroscopy. The reduction of dihydrofolate by NADPH showed a biphasic temperature dependence of the deuterium kinetic isotope effect. At temperatures above 25 degrees C the KIE was temperature independent, while the reaction rates were strongly temperature dependent. Below 25 degrees C the KIE becomes dependent on temperature, and the ratio of the preexponential factors is inverse, suggesting a greater role for active dynamics that modulate the tunneling distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号