首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in electrolyte wettability and ionic conductivity.In this work,iron-nickel-cobalt trimetal Prussian blue analogue(PBA) nanocubes are filled into the electro spun polyacrylonitrile(PAN)-based membranes to generate GPE composites with morphological superiority consisting of fine fibers and interconnected pores.The thus obtained PBA@PAN fibrous membrane showcases good thermal stability,high porosity and electrolyte uptake,as well as a peak io nic conductivity of 2.7 mS/cm with the addition of 10% PBA,Consequently,the assembled lithium iron phosphate(LiFePO_4) battery using PBA@PAN-10 as the GPE delivers a high capacity of 152.2 mAh/g at 0.2 C and an ultralow capacity decay of0.09% per cycle in a long-te rm cycle life of 350 cycles at 1 C,endorsing its promising applications in LPBs.  相似文献   

2.
采用基于密度泛函理论的第一性原理计算方法,计算了锂离子电池LiMnPO4正极材料的电子结构。计算结果表明:当Li+嵌入体系后,O和P的原子布居变化较小,电子向金属原子的转移明显得到加强。Li+和O2-有弱相互作用,当Li+离子脱出以后,氧原子所得到的电子数减小,导致布居减小。锂是以离子形式存在的于LiMnPO4正极材料中。在LiMnPO4和MnPO4体系中,Mn原子具有磁性,其磁矩分别为4.78μB和3.84μB,其余原子磁性近似为0。氧为负离子,带负电荷,而P和Mn则为正离子。O2p与P3s、P3p轨道发生有效重叠,并形成共价键,Mn3d和O2p之间能够有效地发生重叠并形成共价键。在放电过程中有电子从外电路进入正极,大部分电子所带电荷分布在Mn原子上。  相似文献   

3.
通过水热合成的方法制备了不同质量百分比的LiMnPO4包覆LiMn2O4的复合材料,并且利用XRD、拉曼光谱、SEM、TEM以及充放电测试等手段,对其结构和电化学性能进行了表征。研究表明,适当量的LiMnPO4包覆,不仅可以增加材料的可逆比容量,还可以有效提高材料在55℃下的循环特性。1wt%LiMnPO4包覆的LiMn2O4在55℃下的可逆容量为109 mAh.g-1,是其初始容量的96%。此外,1wt%LiMnPO4包覆的LiMn2O4与未包覆的LiMn2O4相比,在倍率特性上也有明显的改善。  相似文献   

4.
A kind of porous nanocomposite polymer membranes (NCPMs) based on poly(vinylidene difluoride-co-hexafluoropropylene) (P(VdF-HFP)) incorporated with different amounts of TiO2 nanoparticles from in situ hydrolysis of Ti(OC4H9)4 was prepared by a non-solvent induced phase separation (NIPS) technology. The SEM micrographs reveal that a porous structure exists in the NCPMs, which changes with the incorporated amount of TiO2. The NCPMs incorporated with 9.0 wt.% of mass fraction of TiO2 possess the highest porosity, 67.3%, and appear as flexile fracture with an elongation ratio, 74.4%. At this content, the ionic conductivity of the NCPE is up to 0.94 × 10−3 S cm−1 at room temperature and the activation energy for ions transport reaches the lowest, 18.71 kJ mol−1. It is of great potential application in lithium ion batteries.  相似文献   

5.
Tetragonal PbSnF4 was prepared by precipitation method with Pb(NO3)2 and SnF2 aqueous solutions. The product was characterized using X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XFS), and the other chemical analyses. Tetragonal PbSnF4 exhibited the highest electric conductivity of 3.2 Sm−1 at 473 K in air as a fluoride ion conductor. We have investigated the possibility of COF2 formation using CO2 and F2 in an electrochemical cell with PbSnF4 as a solid electrolyte. At same time, we tried to produce an electric power from an electrochemical cell. This CO2/F2 electrochemical cell was constructed with a tetragonal PbSnF4 disk having Au electrodes. The electromotive force was about 0.9 V at room temperature for 0.1 MPa CO2/(0.01 MPa F2 + 0.09 MPa Ar). However, the short circuit current density was 0.24 A m−2, which was quite small. This current density was so small that no fluorocarbon compound was detected after 3 h discharge using FT-IR.  相似文献   

6.
A polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors was prepared for fabricating a quasi-solid-state dye-sensitized solar cell (QS-DSSC). The in situ synthesized Acac-Py-I2 ionic conductors show weaker influence on the liquid electrolyte absorbency of the polymer gel electrolyte than that of Acac-Py-I2 ionic conductors dissolved in liquid electrolyte. Owing to the higher liquid electrolyte absorbency, the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows higher ionic conductivity than that of polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte. QS-DSSC containing the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows 3.815% energy conversion efficiency, which is 21.6% higher than that of QS-DSSC containing polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte.  相似文献   

7.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

8.
Poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide (PEMEImI) as a single-ion conductor was designed and synthesized. When appropriate amount of suitable plasticizers, I2 and polyacrylonitrile (PAN) were incorporated into it, the complex formed gel polymer electrolyte. Chemical structure, thermal behavior and ionic conductive properties of the gel polymer electrolyte were investigated by Raman spectra, UV-Vis spectra, differential scanning calorimetry (DSC), and complex impedance analysis, respectively. For the new gel polymer electrolyte, the ionic conductivity of about 1 × 10−3 S cm−1 at room temperature was achieved.  相似文献   

9.
Fluorolactonization of unsaturated carboxylic acids under action of the electrophilic reagent F-TEDA-BF4 in ionic liquids (ILs) has been studied. This reaction proceeds in ILs faster and provides a better stereoselectivity in comparison to acetonitrile as reaction media. Gem-difluorinated γ-lactones have been synthesized by interaction of unsaturated carboxylic acids with F-TEDA-BF4 in ILs.  相似文献   

10.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

11.
LiMn2O4 nanorods were prepared by a facile hydrothermal method in combination with traditional solid-state reactions and characterized by X-ray diffraction analysis. Their electrochemical behavior was tested by cyclic voltammetry and repeated charge/discharge cycling. Results show that the reversible intercalation/deintercalation of Li-ions into/from LiMn2O4 cathode can yield up to 110 mAh/g at 4.5 C, and still retains 88% at the very large charge rate of 90 C with well-defined charge and discharge plateaus. It presents very high power density, up to 14.5 kW/kg, and very excellent cycling behavior, 94% capacity retention after 1200 cycles. It is thus a competitor for LiFePO4.  相似文献   

12.
Porous complex oxide films consisting of preferentially orientated orthorhombic phase of InVO4 have been prepared using a novel simple method by pyrolysis of amorphous complex precursor. The formation and controlling of porous InVO4 films can be easily obtained by modifying the calcination temperature. The pure orthorhombic InVO4 phase can be obtained at a relatively lower temperature (500 °C), and the films are preferential orientation of the (200) face parallel to the substrate. The phase separation mechanism was suggested for the formation of porous films. Under visible light irradiation (λ>400 nm), porous InVO4 films have shown the photocatalytic activity for photodegradation of gaseous formaldehyde, and can generate photocurrent. The electrochemical properties of the films with different crystal structure and pore structure were also investigated.  相似文献   

13.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

14.
The influence of ethylene carbonate (EC) addition on 85poly(ε-caprolactone):15Lithium thiocyanate (85PCL:15LiSCN) polymer electrolyte is investigated using X-ray diffraction, impedance spectroscopy, Wagner's polarization and electrochemical measurements. The results reveal that the amorphicity of the 85PCL:15LiSCN system increases with increase of EC content up to an optimal level of 40 wt.%. This is reflected in the electrical properties of the gel polymer electrolytes, i.e., the 40 wt.% EC-incorporated gel polymer electrolyte exhibits both high amorphicity and high electrical conductivity as compared to the other samples. The EC concentration dependences of dielectric constant and electrical conductivity show a similar trend, indicating that these properties are closely related to each other. The total ionic transference numbers of EC-incorporated gel polymer electrolytes are in the range 0.989–0.993, demonstrating that they are almost completely ionic conductors. The electrochemical stability window of the 40 wt.% EC-incorporated gel polymer electrolyte is ∼4.1 V along with the electrical conductivity of 2.2 × 10−4 S cm−1, which is significantly improved as compared to the 85PCL:15LiSCN system (3.0 V and 1.04 × 10−6 S cm−1). Consequently, the addition of EC in the 85PCL:15LiSCN polymer electrolyte leads to a promising improvement in its various properties.  相似文献   

15.
A new ternary polymer electrolyte based on thermally cross-linked poly(urethane acrylate) (PUA), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-butyl-N-methylpyrrolidinium TFSI (PYR14TFSI) was developed and tested for application in LMP batteries. The polymer electrolyte was a transparent yellow self-standing material with quite good mechanical properties, i.e., comparable to that of a flexible rubber. The room temperature ionic conductivity of the dry polymer electrolyte was found to be as high as 0.1 mS cm−1 for the compound containing 40 wt% of ionic liquid (PYR14TFSI) and a O/Li ratio of 15/1 (Li+ from LiTFSI). The thermal analysis of the new cross-linked electrolyte showed that it was homogeneous, amorphous and stable over a wide temperature range extending from −40 °C to 100 °C. The homogeneity of the polymer electrolyte was also confirmed by SEM analysis.  相似文献   

16.
The structures of the oxyorthogermanate La2(GeO4)O and the apatite-structured La9.33(GeO4)6O2 have been refined from powder neutron diffraction data. La2(GeO4)O crystallizes in a monoclinic unit cell (P21/c) and is cation stoichiometric in contrast to previous reports. La9.33(GeO4)6O2 crystallizes in a hexagonal unit cell (P63/m) and the powder diffraction data show anisotropic peak broadening that is observed in electron diffraction patterns as incommensurate diffuse spots at hkq reciprocal planes (with q=1.6-1.7) and can be attributed to a correlated disorder in the “apatite channels”. This compound was doped up to a nominal composition close to M2La8(GeO4)6O2 with M=Ca, Sr, Ba. The dopant ions preferentially occupy the 4f sites as the number of La vacancies decreases. The measured ionic conductivity of La9.33(GeO4)6O2 is about 3 orders of magnitude larger than for La2(GeO4)O at high temperatures and decreases with increasing dopant content from the highest value of about 0.16 S cm−1 at 1160 K.  相似文献   

17.
MgAl2O4 spinel doping into cathode materials LiMn2O4 was used to improve the cyclic performance of the cathode. X-ray analysis results showed, when MgAl2O4 precursors were mixed with LiMn2O4 and sintered at 770 ℃ for 12 hour, MgAl2O4-LiMn2O4 mulriple spinel with the same physical characteristics as pure LiMn2O4 were synthesized. The electro-chemical performance testing showed, comparing with pure LiMn2O4, the first charge-discharge capacity of doping materials somewhat reduced, but the cyclic performance improved. The mechanism for doping material was also discussed.  相似文献   

18.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

19.
An accurate structure refinement of the deuterated analog of the cesium lithium acid sulfate, formerly identified as ‘Cs1.5Li1.5H(SO4)2’, has been carried out using neutron diffraction methods. Like the protonated material reported earlier (Merinov et al., Solid State Ionics 69 (1994) 53), the compound is cubic, , however, the correct stoichiometry is Cs3Li(DSO4)4. There are four formula units per unit cell and six atoms in the asymmetric unit. The lattice constant measured in this work is a=11.743(2) Å, comparable to the earlier results. The structure contains one disordered hydrogen bond, formed between O(2) atoms and located on two of the edges of the single LiO4 tetrahedron. The Li site occupancy is , as is that of the deuterium site. This level of site occupancies is consistent with a structure in which hydrogen bonds are formed only when the lithium site is unoccupied, and explains the otherwise close proximity of the Li and D atoms, 1.394(10) Å. This unusual structural feature furthermore leads to a fixed stoichiometry, as confirmed here by chemical analysis of both the deuterated and protonated materials, despite the partial occupancy of the lithium and deuterium (hydrogen) atom sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号