首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 31 毫秒
1.
New Hofmann-T(d) type clathrates in the form of Ni(4-Phpy)(2)M(CN)(4)·2G (where 4-Phpy=4-phenylpyridine, M=Cd or Hg and G=1,4-dioxane) have been prepared in powder form and their FT-IR and Raman spectra have been reported. The results suggest that these compounds are similar in structure to the Hofmann-T(d) type clathrates.  相似文献   

2.
The work presents a novel surface-enhanced Raman scattering (SERS)-active surface prepared by electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite. The formation of Ag nanoparticles in MWCNT–ACS nanocomposite was investigated by scanning electron microscopy. It shows that Ag nanoparticles with a diameter of about 100–200 nm in the MWCNT–ACS nanocomposite and some Ag nanoparticles aggregated to form interconnected aggregates. The Ag–MWCNT–ACS-coated indium tin oxide substrate has a considerable effect on the Raman spectra with improvements of more than four times of magnitude as compared with the Ag-coated indium tin oxide substrate. The present methodology demonstrates that the composite composed of Ag, MWCNT, and ACS is suitable for potential plasmonic devices.  相似文献   

3.
The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 105, and the detection limit of rhodamine 6G at DAR surfaces was 10−8 M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications.  相似文献   

4.
In this work, the effect of supplemental LiClO4 electrolytes in KCl solutions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) was first investigated. To prepare SERS-active substrates by ORC procedures, electrolytes of KCl were generally employed. In contrast, LiClO4 ones were unsuitable for producing SERS-active substrates. Encouragingly, SERS of Rhodamine 6G (R6G) adsorbed on the roughened Ag substrate prepared in an aqueous solution containing KCl and LiClO4 electrolytes exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a roughened Ag substrate prepared in a solution only containing KCl. Further investigations indicate that the oxidation state of Cl on the roughened Ag substrate demonstrates decided effects on this improved SERS.  相似文献   

5.
Because Ag and Au nanoparticles (NPs) possess well-defined localized surface plasmon resonance (LSPR) they are popularly employed in the studies of surface-enhanced Raman scattering (SERS). As shown in the literature and in our previous studies, the advantage of SERS-active Ag NPs is their higher SERS enhancement over Au NPs. On the other hand, the disadvantage of SERS-active Ag NPs compared to Au NPs is their serious decay of SERS enhancement in ambient laboratory air. In this work, we develop a new strategy for preparing highly SERS-active Ag NPs deposited on a roughened Au substrate. This strategy is derived from the modification of electrochemical underpotential deposition (UPD) of metals. The coverage of Ag NPs on the roughened Au substrate can be as high as 0.95. Experimental results indicate that the SERS of Rhodamine 6G (R6G) observed on this developed substrate exhibits a higher intensity by ca. 50-fold of magnitude, as compared with that of R6G observed on the substrate without the deposition of Ag NPs. The limit of detection (LOD) for R6G measured on this substrate is markedly reduced to 2 × 10−15 M. Moreover, aging of SERS effect observed on this developed substrate is significantly depressed, as compared with that observed on a generally prepared SERS-active Ag substrate. These aging tests were performed in an atmosphere of 50% relative humidity (RH) and 20% (v/v) O2 at 30 °C for 60 day. Also, the developed SERS-active substrate enables it practically applicable in the trace detection of monosodium urate (MSU)-containing solution in gouty arthritis without a further purification process.  相似文献   

6.
In this work, the effects of preparation conditions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) were first investigated. The optimum roughening conditions for obtaining strongest SERS of Rhodamine 6G (R6G) are as follows. Ag electrodes were cycled in deoxygenated aqueous solutions containing 0.1 M NaCl from −0.3 to +0.2 V versus Ag/AgCl at 25 mV s−1 for five scans. The SERS of R6G adsorbed on this optimum procedure-prepared roughened Ag substrate exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a normally roughened Ag substrate.  相似文献   

7.
In surface-enhanced Raman scattering (SERS) technique the preparation of metal substrates containing minimum hindrance from impurities is an important issue. The synthesis of silver nanoparticles (Ag NPs) active as SERS substrates and having the above-mentioned advantage, were obtained by electron beam irradiation of Ag+ aqueous solutions. Ag+ ions were reduced by free radicals radiolytically generated in solution without the addition of chemical reductants or stabilizing agents.The metal colloids were characterised by UV-Vis spectroscopy and scanning electron microscopy, monitoring the nanoparticles’ growth process that depends on the irradiation dose and the initial AgNO3 concentration. Nanoparticles of long-time stability and with different size and shape, included silver nanocubes, were synthesised by varying the irradiation dose. Different tests on the SERS activity of Ag NPs obtained by electron beam irradiation were performed by using benzenethiol as a probing molecule, achieving a good magnification of the adsorbate Raman bands.  相似文献   

8.
In this study, polypyrrole (PPy) films were electrochemically deposited on gold substrates roughened by an electrochemical triangular-wave oxidation-reduction cycles (ORC) in an aqueous solution containing 0.1N KCl. Then the substrates were heated from 25 to 50 °C and the corresponding SERS performances of PPy were observed in situ. The results indicate that the SERS enhancement capabilities of substrates are gradually raised from 25 °C to a maximum at 40 °C and monotonically decreased from 40 to 50 °C. These SERS enhancement capabilities ascribed to the charge transfers from PPy to Au, which are responsible for the chemical effects of SERS mechanisms, are successfully observed via SERS and high resolution X-ray photoelectron spectroscopy (HRXPS) analyses. The variation in content of the oxidized PPy peak of the double peaks in the range of 1000-1150 cm−1 in SERS spectrum obtained on an Au substrate at different temperatures is consistent with its corresponding variation in the SERS intensity of PPy. The variation in content of the oxidized nitrogen of PPy deposited on an Au substrate at different temperatures revealed from an HRXPS analysis also confirms this consistence.  相似文献   

9.
The different spectral behaviour of silver surface-enhanced Raman spectroscopy (SERS) substrates roughened electrochemically in and without the presence of an analyte has been shown clearly. These differences are associated with anomalous local pH conditions within the cavities in surfaces of high microporosity in the in-situ roughened silver substrates. In-situ roughened silver electrodes appeared to have a much higher porosity compared with ex-situ roughened surfaces.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) of 4,4′-azopyridine (AZPY) on silver foil substrate was measured under 1064 nm excitation lines. Density-functional theory (DFT) methods were used to calculate the structure and vibrational spectra of models such as Ag–AZPY, Ag4–AZPY and Ag6–AZPY complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of AZPY were identified on the ground of analog computation of potential energy distribution. The calculated spectra of Ag4–AZPY and Ag6–AZPY models were much approximated to the experimental results than that of Ag–AZPY model. The DFT results showed that the angles between two pyridyl rings keep 0° from AZPY to Ag–AZPY, Ag4–AZPY and Ag6–AZPY model. The energy gaps between the HOMO and LUMO changed from 363 to 1140 nm for AZPY-Ag complexes according to the DFT results. An conclusion was conceived that chemical enhancement mechanism may play an important role in the SERS of AZPY on silver substrate.  相似文献   

11.
In this work, silver nanoparticles (AgNPs) decorated magnetic microspheres (MMs) are prepared as surface-enhanced Raman scattering (SERS) substrate for the analysis of adenine in aqueous solutions. To prepare these substrates, magnetic particles were first synthesized by coprecipitation of Fe(II) and Fe(III) with ammonium hydroxide. A thin layer of cross-linked polymer was formed on these magnetic particles by polymerization through suspension of magnetic particles into a solution of divinyl benzene/methyl methacrylate. The resulted polymer protected magnetic particles are round in shape with a size of 80 μm in diameter. To form AgNPs on these MMs, photochemical reduction method was employed and the factors in photochemical reduction method were studied and optimized for the preparation of highly sensitive and stable AgNPs on MMs substrates (abbreviated as AgMMs substrates). By dispersing the AgMMs in aqueous samples, cylindrical magnet was used to attract the AgMMs for SERS detections. The observed enhancement factor of AgMMs reached 7 orders in magnitude for detection of adenine with a detection limit approaching to few hundreds of nanomolar.  相似文献   

12.
《Mendeleev Communications》2022,32(6):750-753
Octahedral pseudomorphs of nanostructured silver co-modified with amine and aryl-anchored groups have been found to exhibit a synergistic effect in practical applications of surface- enhanced Raman spectroscopy due to a combination of enhanced chemical sorption and charge transfer effects for quinone analytes. This new approach allows combinatorial modification of the surface of SERS-active materials for selective capturing and detection of target analytes.  相似文献   

13.
The ortho-meta-, and para-fluoro substituted anilines are prototype molecules for investigation of the interactions of both the amino group and the fluorine atom with the aromatic ring. The molecular structures, natural atomic charges and theoretical anharmonic Raman and infrared spectra of the three fluoroaniline isomers have been calculated by using the density functional B3LYP method with the extended 6-311++G(df,pd) basis set. The Raman and infrared spectra of 2FA, 3FA, and 4FA have been recorded. The detailed vibrational assignments of the experimental spectra have been made on the basis of the calculated potential energy distributions, PEDs. The effect of fluorine substituent on the aniline ring geometry and charge distribution, the nature of the characteristic “marker bands” and a quenching of intensities of some bands are discussed. It is shown that the frequencies of the NH2 stretching vibrations depend on the degree of pyramidalization of the C-NH2 group, in the isomers. In 2FA and 3FA, the NH2 stretching frequencies are higher than those in 4FA. This corresponds to a more flattened structure of the amino group in 2FA and 3FA, in comparison to 4FA.  相似文献   

14.
A study of the interaction between paraquat (methyl viologen) and humic acids, extracted from a soil amended over 30 years with crop residues, cow slurries and cattle manure, was carried out by two emission spectroscopies based on plasmonic effects: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). To carry out this study Ag nanoparticles were used. The complex formation was tested by analyzing the effect of the herbicide on humic acids, and by varying experimental parameters such as the pH and the laser excitation wavelength. The study of the vibrational bands led to infer information about the interaction mechanism of paraquat with humic acids and to find a correlation between this interaction and the humic acids structural modification induced by the different amendments added to soil.  相似文献   

15.
记录了(E)-2-二甲基-1,3-戊二烯的固、液、气态FTIR光谱(400~4000cm~(-1))和固、液态Raman光谱(50~4000cm~(-1)),观测了685及658cm~(-1)谱线的变温FTIR光谱(-73~10℃).对所得谱图进行的指认分析发现,该化合物存在两种单键旋转构象异构体s-trans和s-cis,由变温FTIR光谱峰强度随温度的变化得到这两种构象互变的ΔH~0和ΔS~0。  相似文献   

16.
Heterobimetallic complexes [Cu x Zn1? x (dadb)?·?yH2O] n {where dadb?=?2,5-diamino-3,6-dichloro-1,4-benzoquinone (1); x?=?1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7), and 0 (3); y?=?2; n?=?degree of polymerization} were synthesized and characterized. All metal complexes are stable at room temperature but weakly absorb moisture on exposure to air. Monometallic 2 exhibits subnormal magnetic moment whereas 3 exhibits diamagnetism. Heterobimetallic complexes exhibit normal magnetic moments. Heterobimetallic complexes are characterized from powder X-ray diffraction, thermal analysis, and electron spin resonance (ESR) spectral studies. Delocalization of unpaired electron from metal to ligand has been inferred from ESR and natural bond orbital (NBO) analysis. Greater delocalization of unpaired electron of Cu(II) on ligand of 4 as compared to that of 2 is reflected from NBO analysis. Heterobimetallic complexes show higher conductivity than monometallic complexes; all the complexes exhibit semiconductor behavior.  相似文献   

17.
Two novel phenylated pyrylium compounds, silver (I)-bridged 2,3,4,5-tetraphenylpyrylium perchlorate (P1) and its silver (I)-free pyrylium ligand (P2) were prepared from 1,2,3,4-tetraphenylcyclopentadiene to examine their spectroscopic behaviors. The UV/vis absorption and fluorescent emission spectra of P1 and P2, measured in three solvents (acetonitrile, dichloromethane and toluene), reveal that the photophysical behaviors are closely related to silver (I) fragment, and strongly dependent on solvent polarity. In polar acetonitrile, P1 displays longer absorption wavelength and much lower fluorescent emission intensity than P2, although they exhibit much similarity in shape. In contrast, in nonpolar toluene, while P2 shows an apparent absorption band at 338 nm, P1 displays a tail-like line without absorption band observed. All the spectra obtained indicate a better coplanarity and a stronger intra-molecular charge transfer in P1 due to the effect of silver (I) fragment. Additionally, the 1H NMR spectra of P1 and P2, which were recorded under the same conditions, indicate that the silver (I) fragment reinforces pyrylium ring's capacity to localize the formal positive charge within the heterocyclic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号