首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

2.
3.
The optimized molecular structure, atomic charges, vibrational frequencies, thermodynamic properties, nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-Vis) spectral data of pentacarbonyl(4-methylpyridine)chromium(0) complex have been investigated by performing ab initio Hartree-Fock (HF) and density functional theory, B3LYP, B3PW91 and BE1PBE methods with 6-311G, 6-311+G(3d,3p) and 6-31G(d,p) basis set. The calculated NMR data at 6-311G basis set, vibrational frequencies at 6-311+G(3d,3p) basis set and the optimized geometric bond lengths and bond angles at 6-31G(d,p) basis set are in good agreement with the corresponding experimental values. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been simulated. In addition, the transition state and energy band gap and infrared intensities have also been reported.  相似文献   

4.
The optimized molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) (1)H and (13)C NMR shift values of 5-(4-bromophenylamino)-2-methylsulfanylmethyl-2H-1,2,3-triazol-4-carboxylic acid ethyl ester have been calculated by using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31G(d,p) and LANL2DZ basis sets. The optimized molecular geometric parameters were presented and compared with the data obtained from X-ray diffraction. In order to fit the calculated harmonic wavenumbers to the experimentally observed ones, scaled quantum mechanics force field (SQM FF) methodology was proceeded. Correlation factors between the experimental and calculated (1)H chemical shift values of the title compound in vacuum and in CHCl(3) solution by using the conductor-like screening continuum solvation model (COSMO) were reported. The calculated results showed that the optimized geometry well reproduces the crystal structure. The theoretical vibrational frequencies and chemical shifts are in very good agreement with the experimental data. In solvent media the energetic behavior of the title compound was also examined by using the B3LYP method with the 6-31G(d) basis set, applying the COSMO model. The obtained results indicated that the total energy of the title compound decreases with increasing polarity of the solvent. Furthermore, molecular electrostatic potential (MEP), natural bond orbital (NBO) and frontier molecular orbitals (FMOs) of the title compound were performed by the B3LYP/LANL2DZ method, and also thermodynamic parameters for the title compound were calculated at all the HF and B3LYP levels.  相似文献   

5.
In this work, the FT-IR and FT-Raman spectra of 1-naphthaleneacetic acid methyl ester (abbreviated as 1-NAAME, C10H7CH2CO2CH3) have been recorded in the region 3600–10 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities, Raman scattering activities, corresponding vibrational assignments, Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of HF and B3LYP (DFT) method using 6-31G(d,p), 6-311G(d,p) basis sets. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. The correlation equations between heat capacity, entropy, enthalpy changes and temperatures were fitted by quadratic formulae. Lower value in the HOMO and LUMO energy gap explains the eventual charge transfer interactions taking place within the molecule. UV–VIS spectral analyses of 1NAAME have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) for gas phase and solvent (DMSO and chloroform) are also illustrated.  相似文献   

6.
In this work, the FT-IR and FT-Raman spectrum of 1-(chloromethyl)-2-methyl naphthalene (abbreviated as 1-ClM-2MN, C(12)H(11)Cl) have been recorded in the region 3600-10cm(-1). The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities, Raman scattering activities, corresponding vibrational assignments, Mullikan atomic charges and thermo-dynamical parameters were investigated with the help of HF and B3LYP (DFT) method using 6-311G(d,p), 6-311++G(d,p) basis sets. Also, the dipole moment, linear polarizabilities, anisotropy, first and second hyperpolarizabilities values were also computed using the same basis set. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The correlation equations between heat capacities, entropies, enthalpy changes and temperatures were fitted by quadratic formulas. Lower value in the HOMO and LUMO energy gap explains the eventual charge transfer interactions taking place within the molecule. UV-vis spectral analysis of 1-ClM-2MN has been researched by theoretical calculations. In order to understand the electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) for gas phase and solvent are also illustrated.  相似文献   

7.
《Vibrational Spectroscopy》2007,43(2):325-332
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments of 2-,4-,6-methylquinoline (2-,4-,6-mq) in the ground state were performed by HF and DFT/B3LYP levels of theory using the 6-31++G(d,p) basis set. Harmonic and anharmonic vibrational frequencies were calculated. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method by using parallel quantum mechanic solutions program. The general agreements between the observed and calculated frequencies are shown.  相似文献   

8.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

9.
The optimized molecular structures, vibrational frequencies, corresponding vibrational assignments, thermodynamic properties, UV–vis spectra and atomic charges of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole molecule have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods at 6–31G (d,p) basis set. The obtained bond lengths and bond angles have been seen to be good agreement with the experimental data. After calculated vibrational frequencies have been compared with each other, the correlation coefficient has been determined. Moreover, we have not only simulated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) but also determined the transition state and energy band gap. Infrared intensities and Raman activities have been also reported.  相似文献   

10.
Basis set dependence of the vibrational wavenumbers of out-of-plane modes calculated at the MP2 level of ab initio molecular orbital theory is examined for benzene, p-benzoquinodimethane, p-benzoquinone, furan, and thiophene. Various polarization functions up to (3df,p) are used in combination with the 6-31G and 6-311G basis sets. It is shown that, especially in the case of normal modes with alternate out-of-plane motions of the carbon atoms (such as the ν4 (b2g) mode of benzene), the calculated wavenumbers depend strongly on the exponents (d) of the d functions on the carbon atoms. It is therefore necessary to include d functions with an optimum exponent (d0.4) on the carbon atoms to obtain reasonable out-of-plane vibrational force fields. In a few cases (such as the ν16 (a2) mode of furan), inclusion of a set of f functions on the carbon atoms has some effects on the calculated wavenumbers of out-of-plane modes. However, unless the basis set contains an optimum set of d functions, inclusion of a set of f functions does not improve the agreement between the observed and calculated vibrational wavenumbers. As a case with an exaggerated effect of basis set, it is shown that the wavenumber of the ν41 (b2g) mode of the planar optimized structure of p-benzoquinodimethane is calculated to be imaginary by using the 6-311G(d,p) or 6-311G(df,p) basis set at the MP2 level. For all the molecules treated in the present study, reasonable out-of-plane vibrational force fields are obtained by using the 6-31G(2df,p) and 6-311G(2df,p) basis sets.  相似文献   

11.
The torsional potentials, molecular conformations and vibrational spectra, of 2-, 3- and 4-formyl pyridine have been investigated using density functional theory (DFT) method with 6-31+G* basis set. From the calculations, 2-formyl pyridine and 3-formyl pyridine were predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of 9.38 kcal/mol and 8.55 kcal/mol, respectively. The two equivalent planar structures of 4-formyl pyridine are separated by an energy barrier of 7.18 kcal/mol. The vibrational wavenumbers and the corresponding vibrational assignments of molecules in C(s) symmetry were examined theoretically and the calculated Infrared of the molecules in the cis conformation was plotted. Observed wavenumbers for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of DFT force fields using the standard 6-31+G* basis set of the theoretical optimized geometry.  相似文献   

12.
Comprehensive studies of the molecular structures, vibrational frequencies and infrared intensities of the antiperiplanar (ap) and synclinal (sc) conformers of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) have been performed by the density functional (B3LYP) method using the extended 6-311++G(df,pd) basis set. The detailed natural bond orbital (NBO) analysis has revealed the nature of the hyperconjugative interactions, which stabilize each conformer, in the gas phase. The mid-infrared spectra of HFIP in carbon tetrachloride solution were measured, and the experimental intensities of each conformer were obtained by the curve–resolution procedure. The relative abundance of the two conformers, calculated from the relative intensities, shows nearly equimolar ratio (Nsc/Nap ≈ 1), in this solution. The DFT-predicted frequencies show very good agreement with the experimental data. The clear-cut vibrational assignment for each conformer is reported on the basis of the calculated potential energy distributions. Several controversies in an earlier assignment of HFIP have been elucidated.  相似文献   

13.
The present work contributes to a combined theoretical and experimental investigation on oxyclozanide. The experimental vibrational spectra were characterized by Fourier transform infrared (4000-400 cm?1), Fourier transform Raman (4000-400 cm?1), 1H and 13C NMR were recorded in Deuterated methanol, UV–Vis (200–400 nm) techniques and theoretical optimized molecular geometry, harmonic vibrational spectra, magnetic spectra, and electronic spectra was calculated by Density Functional Theory (DFT) employed with B3LYP/6-311++G(d,p) basis set and compared with experimental data. The highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO) energy was also calculated for the titled compound. The intermolecular interactions have been addressed through Hirshfeld surface analysis. In addition, Natural bond orbital (NBO) analyses of the title compound were performed to evaluate the suitable reactivity site and chemical stabilization behavior, Mulliken atomic charge distribution, and molecular electrostatic potential energy surfaces, were calculated to get a better insight into the structure of oxyclozanide. The experimental and theoretical findings suggest an excellent correlation to confirm the structure of oxyclozanide.  相似文献   

14.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments of methylphenidate in the ground state were performed by DFT/B3LYP level of theory using the 6-311++G(d, p) basis set. Harmonic vibrational frequencies were calculated. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The conformational stabilities and optimized geometrical parameters have been carried out with density functional theory with 6-311++G(d, p) basic set by the DFT/B3LYP method. The frequency calculations have been performed with DFT to study the vibrational properties and their dependence on the molecular conformation.  相似文献   

15.
We have calculated optimal frequency scaling factors for the B3LYP/ 6-311+G(d,p) method for fundamental vibrational frequencies on the basis of a set of 125 molecules. Using the new scaling factor, the vibrational frequencies calculated with the triple-zeta basis set 6-311+G(d,p) give significantly better accuracy than those calculated with the double-zeta 6-31G(d) basis set. Scale factors were also determined for low-frequency vibrations using the molecular set of 125 molecules and for zero-point energies using a smaller set of 40 molecules. We have studied the effect on the calculated vibrational frequencies for various combinations of diffuse and polarization functions added to the triple-zeta 6-311G basis set. The 6-311+G(d,p) basis set is found to give almost converged frequencies for most molecules, and we conclude that our optimum scaling factors are valid for the basis sets 6-311G(d,p) to 6-311++G(3df,3pd). The new scale factors are 0.9679 for vibrational frequencies, 1.0100 for low-frequency vibrations, and 0.9877 for zero-point vibrational energies.  相似文献   

16.
Lysergol, elymoclavine (Δ9,10 and Δ8,9 regioisomers), and dihydrolysergol are important members of ergolines. The present work reports their comparative study in gas and solvent phase (water) that has been performed both experimentally and theoretically. Theortical calculations have been carried within the density functional theory formalism to analyze the structural and electronic properties of these molecules with B3LYP hybrid exchange–correlational fuctional in conjunction with 6‐311++G (d,p) basis set. Hessian calculations are performed at B3LYP/6‐31G (d,p) level of theory in gas phase as well as other solvent phases. Solvent phase calculations are performed using Onsager reaction field model as implemented in Gaussian 03. A good agreement has been found between experimental and theoretical infrared and nuclear magnetic resonance (NMR) spectra. The calculated NMR data has been analyzed statistically. Stability of these regioisomers has been analyzed in terms of the energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO gap). Calculations for lysergol and elymoclavine in water as solvent were carried to examine the effect of solvent on the HOMO–LUMO levels and energy of these molecules. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Quantum chemical calculations of geometrical structure and vibrational wavenumbers of 8-hydroxyquinolinium picrate (8-HQP) were carried out by ab initio HF and density functional (DFT/B3LYP) method with 6-31++G(dp) basis set. The calculated geometric parameters of 8-HQP are presented. A detailed interpretation of the infrared spectra of 8-hydroxyquinolinium picrate (8-HQP) are also reported. Theoretical molecular frontier orbital energies of the title compound have been calculated using the method mentioned above in order to understand this phenomenon in the context of molecular orbital picture. The molecular HOMOs and LUMOs generated via HF and B3LYP method have been outlined.  相似文献   

19.
The molecular geometric optimization, vibrational frequencies, and gauge-including atomic orbital (GIAO) 1H and 13C chemical shift values of 3-[(1E)-N-ethylethanimidoyl]-4-hydroxy-6-methyl-2H-pyran-2-one have been investigated by using ab initio Hartree–Fock (HF) and density functional method (B3LYP: Becke-3-Lee–Yang–Parr) with 6–31G(d) and 6–31++G(d,p) basis sets. Also, the first hyperpolarizabilities have been calculated at the HF and B3LYP levels employing the corresponding basis sets. To understand this phenomenon in the context of molecular orbital picture, we examined the molecular HOMOs and molecular LUMOs generated via HF and B3LYP levels. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Data of 3-[(1E)-N-ethylethanimidoyl]-4-hydroxy-6-methyl-2H-pyran-2-one display significant second-order molecular nonlinearity and provide the basis for design of efficient nonlinear optical materials.  相似文献   

20.
Abstract

Zn(II) and Ni(II) complexes of 5-fluoroisatin-3-[-(N-cyclohexylthiosemicarbazone)] (H2FIC) have been prepared and characterized structurally by means of elemental analyses, FTIR, electronic, and 1H NMR spectra. The theoretical wavenumbers, IR intensities, and molecular parameters have been calculated by the ab-initio Hartree–Fock (HF) method with the LanL2DZ basis set. The theoretical wavenumbers show a good agreement with experimental data. The bond lengths, bond angles, the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), the energy gap between EHOMO and ELUMO (ΔEHOMO-LUMO), dipole moment, and charges on the atoms of H2FIC as monomer form were studied by the density functional theory/Becke-3-Lee-Yang-Parr (DFT/B3LYP) and ab-initio HF methods using 6-31G(d,p) basis set. The trimeric possible structure of H2FIC was also investigated using HF method. The observed IR wavenumbers of the H2FIC were analyzed in the light of the computed vibrational spectra of its monomer and trimer forms.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号