共查询到20条相似文献,搜索用时 0 毫秒
1.
Kanghyun Kim Haeyong Kang Hyeyoung Kim Jong Soo Lee Sangtae Kim Woun Kang Gyu-Tae Kim 《Applied Physics A: Materials Science & Processing》2009,94(2):253-256
The contact potential between a single ZnO nanowire and Ti/Au contacts was estimated to be ∼30 meV by considering the Arrhenious
plot of the two-probe resistance, the thermionic emission conduction, and the Fowler–Nordheim tunneling model. The net voltages
applied to the contacts were calculated by subtracting the four-probe voltages from the two-probe voltages at the same currents.
The activation energy of the four-probe resistance was about 2.4 mV which was 1/11th of that of the two-probe resistance.
The Fowler–Nordheim plot clearly showed the crossover of the conduction mechanism from thermionic emission to tunneling regime
as lowering the temperatures below T<100 K. 相似文献
2.
采用分子动力学模拟方法, 研究了填充在(8,8)单壁碳纳米管内的Au纳米线的结构和热稳定性. 研究表明, 经高温退火至室温, Au在碳纳米管内能生成多样而稳定的结构上明显区别于自由状态Au纳米线的壳层螺旋结构Au纳米线, 其螺旋结构会随着温度的变化而转变. 束缚在碳纳米管内的壳层螺旋结构Au纳米线有非常好的热稳定性, 稳定温度高于块体Au晶体的熔化温度.
关键词:
纳米线
碳纳米管
热稳定性
分子动力学模拟 相似文献
3.
A new type of one-dimensional (1D) carbon structure, carbon nanowires (CNWs), was discovered in the cathode deposits prepared by hydrogen arc discharge evaporation of carbon rods. Observation of high-resolution transmission electron microscopy (HRTEM) indicates that a CNW consists of a multiwalled carbon nanotube (MWNT) with a long 1D linear carbon chain (C chain) inserted into its innermost tube of 0.7 nm in diameter. The characteristic Raman peaks of CNWs appeared at around 1850 cm(-1). Raman scattering and HRTEM studies show the formation of a long linear C chain involving more than 100 carbon atoms inside a MWNT. This novel 1D carbon allotrope has potential applications in nanoelectronics, nanomechanics, and nanomaterials. 相似文献
4.
This paper reports on the contact resistance (Rc) between carbon filler/natural rubber (NR) nanocomposite and gold ball: three varieties of nanocomposites were prepared from carbon black (CB) and two kinds of multi-walled carbon nanotubes (MWCNTs) with different diameter. Rc of MWCNT/NR nanocomposite was remarkably less than that of CB/NR nanocomposites. The relationship between Rc of MWCNT/NR nanocomposites and applied load was expressed in the formula, Rc=C·P−n (P: load, C and n: constant): for the MWCNTs (diameters of 13 nm)/NR and MWCNTs (diameters of 67 nm)/ NR nanocomposites, they were expressed as Rc=1724·P−0.6 and Rc=344·P−0.37, respectively. The former (MWCNT, ϕ13 nm) showed higher Rc than the latter (MWCNT, ϕ67 nm) over whole region of applied load. The mechanical hardness of the former was higher (90 HsA) than that of the latter (82 HsA). Therefore, the smaller contact area between the nanocomposite and gold ball of the former resulted in higher Rc. The apparent specific contact resistivity was calculated from the observed values of Rc and contact area: 130 Ω mm2 and 127 Ω mm2 for the former (MWCNT, ϕ13 nm) and the latter (MWCNT, ϕ67 nm), respectively. 相似文献
5.
通过分子动力学方法模拟了在碳纳米管内填充一定数目的半导体元素硅形成碳纳米管-硅纳米线复合结构的过程,并采用Lindemann指数研究了这种复合结构的热稳定性.计算结果表明,当考虑碳纳米管和硅纳米线轴向方向的周期性边界条件之后,在C(13,0)和C (14,0)碳纳米管内能够形成亚稳结构的硅纳米线Si16NW和Si20NW,从而获得一种碳纳米管-硅纳米线的新型复合结构.通过计算这种复合结构的Lindemann指数,可以看到由于碳纳米管的保护作用,碳纳米管包裹的硅纳
关键词:
复合结构
纳米线
碳纳米管
分子动力学 相似文献
6.
In this article, we have decorated multiwalled carbon nanotubes (MWCNTs) scaffold with ZnO quantum dots (QDs, size in the range of 2.9–4.5 nm) and investigated their prospects for photovoltaic applications. ZnO QDs, in the present study, work as photosensitizer instead of electron transporting media as used in recent conventional strategic solar cells. ZnO QDs/MWCNTs composite shows an increased visible absorbance and quenching of the broad visible emission at around ~560 nm, while only ZnO QDs exhibit a strong visible emission. An efficient electron–hole separation facilitates an increase in the short-circuit current. These results show a possibility of developing a nontoxic, ZnO QDs sensitized MWCNTs composite-based photovoltaic solar cell. 相似文献
7.
Shu Qinke Xuchun Gui Chaoran Ma Hongwei Zhu Yi Jia Xinming Li Ning Guo Dehai Wu 《Journal of Physics and Chemistry of Solids》2010,71(4):708-711
Silicon nanowire (SiNW) arrays were fabricated on silicon wafers by the metal-assisted chemical etching method. Varied average diameters of SiNW arrays were realized through further treatment in a mixed agent of HF and HNO3 of certain concentrations. After the treatment, there were more than 93% SiNWs with diameters smaller than 100 nm. The tip of each SiNW was subsequently wrapped with multi-walled carbon nanotubes (MWCNTs) with chemical vapor deposition method. The as-fabricated MWCNT/SiNW arrays were fabricated into electric field emitters, with turn-on field of 2.0 V/μm (current density: 10 μA/cm2), much lower than that of SiNW array (5.0 V/μm). The turn-on electric field of MWCNT/SiNW array decreased with the decreasing of the average diameter of SiNWs, indicating the performance of the field emission is relative to the morphology of SiNWs. As the SiNW array is uniform in height and easy to fabricate, the MWCNT/SiNW array shows potential applications in flat electric display. 相似文献
8.
One-step synthesis of pure Cu nanowire/carbon nanotube coaxial nanocables with different structures by arc discharge 总被引:1,自引:0,他引:1
Jijun Ding Xingbin Yan Beng Kang Tay Qunji Xue 《Journal of Physics and Chemistry of Solids》2011,72(12):1519-1523
Pure Cu nanowire/carbon nanotube (Cu@C) coaxial nanocables are one-step fabricated by arc discharge. The microstructure and morphology of the Cu@C nanocables are investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that the copper carbide nano-crystals were formed in the nanocables and it plays an important role in the growth of the Cu@C nanocables. As-prepared Cu@C nanocables exhibit three different structures, including well-filled Cu@C nanocables, symmetrically trifurcate Cu@C nanocables, and twice capsulated Cu@C nanocables. The fabrication of Cu@C nanocables with different structures offers more opportunities for the development of nanoelectronic devices. The formation mechanisms of Cu@C nanocables with different structures are discussed as well. 相似文献
9.
Zhiming Bai Xiaoqin Yan Xiang Chen Hanshuo Liu Yanwei Shen Yue Zhang 《Current Applied Physics》2013,13(1):165-169
A ZnO nanowire (NW) array ultraviolet photodetector (PD) with Pt Schottky contacts has been fabricated on a glass substrate. Under UV light illumination, this PD showed a high photo-to-dark current ratio of 892 at 30 V bias. Interestingly, it was also found that this PD had a high sensitivity of 475 without external bias. This phenomenon could be explained by the asymmetric Schottky barrier height (SBH) at the two ends causing different separation efficiency of photogenerated electron–hole pairs, which resulted in the formation of photocurrent. It is anticipated to have potential applications in self-powered UV detection field. 相似文献
10.
Laurence Latu-Romain Maelig Ollivier Arnaud Mantoux Geoffroy Auvert Odette Chaix-Pluchery Eirini Sarigiannidou Edwige Bano Bernard Pelissier Charbel Roukoss Herv�� Roussel Florian Dhalluin Bassem Salem Nikoletta Jegenyes Gabriel Ferro Didier Chaussende Thierry Baron 《Journal of nanoparticle research》2011,13(10):5425-5433
Si nanowires (NWs), with diameters of about 800 nm and lengths of about 10 ??m, previously synthesized by the VLS method with gold catalyst, were carburized at 1,100 °C under methane for conversion into SiC nanostructures. These experiments have shown that Si NWs have been transformed into SiC nanotubes (NTs) with approximately the same sizes. Nanotubes?? sidewall thickness varies from 20 to 150 nm depending on the NTs?? height. These SiC nanotubes are hexagonal in shape and polycrystalline. A model of growth based on the out-diffusion of Si through the SiC layer was proposed to explain the transformation from Si nanowires to SiC nanotubes. This model was completed with thermodynamic calculations on the Si?CH2?CCH4?CO2 system and with results from complementary experiment using propane precursor. Routes for obtaining crystalline SiC NTs using this reaction are proposed. 相似文献
11.
《Journal of Physics and Chemistry of Solids》2004,65(2-3):359-361
Boron nitride (BN) nanotubes were investigated by high-resolution electron microscopy (HREM) and image processing. From the HREM image, a BN nanotube encapsulating yttrium nanowire was confirmed by comparing calculated diffraction and a nanostructure model. The present work indicated that yttrium elements could be confined in BN nanotube with large energy gap. 相似文献
12.
Thermal conductivity of carbon nanotube superlattices:Comparative study with defective carbon nanotubes 下载免费PDF全文
We use molecular dynamics simulation to calculate the thermal conductivities of(5, 5) carbon nanotube superlattices(CNTSLs) and defective carbon nanotubes(DCNTs), where CNTSLs and DCNTs have the same size. It is found that the thermal conductivity of DCNT is lower than that of CNTSL at the same concentration of Stone–Wales(SW) defects. We perform the analysis of heat current autocorrelation functions and observe the phonon coherent resonance in CNTSLs, but do not observe the same effect in DCNTs. The phonon vibrational eigen-mode analysis reveals that all modes of phonons are strongly localized by SW defects. The degree of localization of CNTSLs is lower than that of DCNTs, because the phonon coherent resonance results in the phonon tunneling effect in the longitudinal phonon mode. The results are helpful in understanding and tuning the thermal conductivity of carbon nanotubes by defect engineering. 相似文献
13.
We studied Li-intercalated carbon nanotube ropes by first-principles methods. Results show charge transfer between Li and C and small structural deformation due to intercalation. Both the interior of the nanotube and the interstitial space are susceptible for intercalation. The Li intercalation potential of a single-walled nanotube rope is comparable to that of graphite and almost independent of the Li density up to around LiC2, as observed in recent experiments. This density is significantly higher than that of Li-intercalated graphite, making the nanorope a promising candidate for the anode material in battery applications. 相似文献
14.
R. S. Yang 《哲学杂志》2013,93(14-15):2097-2104
This paper reports on ZnO nanowires arrays synthesized using Sn as a catalyst. The Sn particles were produced from the reduction of SnO2 powders via a vapour-solid growth process. Control of growth conditions led to the formation of ZnO nanowire arrays, radial nanowire ‘flowers’ and uniaxial fuzzy nanowires. ZnO nanowire–nanobelt junctions were also grown by changing the growth direction. As-grown nanowire arrays could be fundamental materials for investigating physical and chemical properties at nano-scale dimensions. 相似文献
15.
G. Guo J. Guo D. Tao W.C.H. Choy L. Zhao W. Qian Z. Wang 《Applied Physics A: Materials Science & Processing》2007,89(2):525-528
A multi-wall carbon nanotube (MWCNT)/ZnO nanoparticle composite is fabricated by the thermal decomposition of a mixture of
Zn(NH3)4CO3, MWCNTs and polyvinyl pyrrolidone (PVP). From the infrared spectra of dried samples of Zn(NH3)4CO3, PVP, and the mixture of Zn(NH3)4CO3 and PVP, we show that there is a coordination interaction between the Zn of Zn(NH3)4CO3 and the carbonyl of PVP. Thermal decomposition of the mixture of Zn(NH3)4CO3 and PVP with MWCNTs results in the decomposition of Zn(NH3)4CO3 to ZnO nanoparticles which are well-dispersed on the outer walls of the MWCNTs. The results show that PVP can be used to
control the ZnO nanoparticle size and its dispersion on the MWCNTs walls during decomposition. This method is favorable for
large scale synthesis.
PACS 61.10.Nz; 61.46.Fg; 61.46.Df; 78.30.-j 相似文献
16.
A. M. Visco N. Campo L. Torrisi F. Caridi 《Applied Physics A: Materials Science & Processing》2011,103(2):439-445
This paper reports a study of the laser welding of polymeric joints composed by two polyethylene sheets, one pristine and
the other filled by carbon nanotubes. In order to know the material modifications occurring during the laser exposure and
the phenomena that seal the polymeric sheets, the physical, chemical and mechanical features of the welded area were analysed.
The mechanical resistance of the welded joint and the structural changes of the polymer were checked by mechanical shear tests,
absorption coefficient measurements, calorimetric analyses, mass quadrupole spectrometry and electron microscopy. The welding
effectiveness was investigated as a function of the filler concentration. 相似文献
17.
以碳纳米管(CNT)和四针状纳米氧化锌(NT-ZnO)混合物作为吸收剂、环氧树脂(EP)为黏结剂制备吸波涂层,研究不同CNT和NT-ZnO含量对吸波性能的影响.采用三次刷涂后,发现当CNT含量达到12%,NT-ZnO的含量为8%、涂层厚度为1·5mm时,吸波涂层的最小反射率为-23·07dB,小于-10dB的吸波带宽为5GHz,涂层的面密度2kg/m2·复合涂层的吸波性能比纯CNT和纯NT-ZnO涂层有显著的提高,并对其吸波机理进行了分析. 相似文献
18.
We investigated the dependence of localized surface plasmon resonance (LSPR) coupled photoluminescence (PL) emission on the density of a metallic single-walled carbon nanotube (m-SWCNT). The m-SWCNTs of various densities were deposited on top of ZnO films by spin coating and filtration transfer method to form the hybrid structures. We observed PL enhancement from ZnO films deposited with spin coated m-SWCNT, comparing with pure ZnO film. The m-SWCNT acts as absorbers for the light emitted due to SPR. After resonant excitation, hot electrons in m-SWCNT are created in high energy states, which can then transfer from the m-SWCNT to the conduction band of the ZnO films. We discuss the relationship between the hot electron flow generated by internal photoemission and LSPR. 相似文献
19.
With intense femtosecond laser excitation, multiphoton absorption-induced stimulated emission and laser emission in ZnO bulk crystal and nanowires have been demonstrated at room temperature. UV-stimulated emission peaks appeared in both bulk crystal and nanowires when the excitation exceeded certain thresholds, and a sharp lasing peak with a linewidth of ~0.5 nm was observed from ZnO nanowires. The emission properties were attributed to the band-edge emission of the recombination of carriers excited by two- and three-photon absorption processes in the wide-bandgap semiconductor. 相似文献
20.
ZnO纳米线作为新型太阳能电池结构的重要组成部件之一, 其导电能力直接影响到太阳能电池的性能. 采用密度泛函理论平面波超软赝势方法, 计算并分析了C2H6O(乙醇)、 C6H5FS(4-氟苯硫酚)、 C7HF7S(4-(三氟甲基L)-2, 3, 5, 6-四氟硫代苯酚) 等小分子吸附的六边形结构\langle0001angle ZNWs (ZnO 纳米线) 的几何结构、 吸附能和电子结构. 首先, 通过几何优化得到了不同基团吸附的ZNWs的稳定结构, 同时吸附能计算结果表明C7HF7S吸附的体系结构最为稳定, 且吸附呈现放热反应; 其次, 为研究表面敏化对导电性能的影响, 计算了不同小分子基团吸附下的能带结构和态密度, 并利用能带理论分析了表面吸附敏化对禁带宽度的调控机理, 结果分析表明小分子表面吸附敏化对ZNWs的电学性能有一定的影响, 其中C7H7FS和C6H5FS分子均发生了不同程度的电荷转移. 相似文献