首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiFe2O4纳米线阵列的制备与磁性   总被引:4,自引:0,他引:4       下载免费PDF全文
于冬亮  都有为 《物理学报》2005,54(2):930-934
在氧化铝模板的纳米孔洞中, 用电化学的方法沉积铁镍合金纳米线,经过550℃30h氧化处理 , 成功制备出 NiFe2O4纳米线阵列. 分别用扫描电子显微镜 (SEM) 、透射电 子显微镜 (TEM) 、x射线衍射仪 (XRD) 和振动样品磁场计 (VSM) 对样品的形貌、晶体结构 和磁学性质进行了表征测试. SEM和TEM观察结果显示氧化铝模板的孔洞分布均匀,孔心距约 为110nm; 纳米线的直径约为70nm. XRD显示纳米线阵列的物相结构为NiFe2O4; VSM测试结果表明,NiFe2O4纳米线阵列膜的易磁化方向垂直于膜面. 当垂直 磁化时磁滞回线的矩形比约为05,矫顽力为41×103A/m,比氧化处理前的铁镍合金 纳米线阵列都有显著提高. 关键词: 纳米线 Ni Fe2O4 矫顽力  相似文献   

2.
Nanoparticles of nickel ferrite have been synthesized by the sol–gel method and the effect of grain size on its structural and magnetic properties have been studied in detail. X-ray diffraction (XRD) studies revealed that all the samples are single phasic possessing the inverse spinel structure. Grain size of the sol–gel synthesized powders has been determined from the XRD data and the strain graph. A grain size of 9 nm was observed for the as prepared powders of NiFe2O4 obtained through the sol–gel method. It was also observed that strain was induced during the firing process. Magnetization measurements have been carried out on all the samples prepared in the present series. It was found that the specific magnetization of the nanosized NiFe2O4 powders was lower than that of the corresponding coarse-grained counterparts and decreased with a decrease in grain size. The coercivity of the sol–gel synthesized NiFe2O4 nanoparticles attained a maximum value when the grain size was 15 nm and then decreased as the grain size was increased further.  相似文献   

3.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

4.
We report the optical and electronic properties of the inverse spinel ferrite NiFe2O4 and CoFe2O4 thin films deposited on single crystal sapphire by electron beam deposition. We carried out variable temperature (78–500 K) transmittance measurements on the thin films to investigate the optical properties and electronic structures of these ferrites. The absorption spectra of both NiFe2O4 and CoFe2O4 thin films show insulating characters with Ni (Co) d to d on-site transitions below 3 eV. The energy bands above 3 eV are mainly due to the O 2p to Fe 3d charge transfer transitions. The observed electronic transitions have been assigned based on the first principles calculations and comparisons with structurally similar Ni and Co-containing compounds. The Co2+ d to d transition in the CoFe2O4 thin film shows a strong temperature dependence, likely due to the spin-charge coupling effect.  相似文献   

5.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

6.
低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用低温固相反应法制备了晶粒尺寸在8—47nm之间的NiFe2O4纳米颗粒系列样品,用X射线衍射仪(XRD)、高分辨中子粉末衍射谱仪、振动样品磁强计和超导量子干涉仪等对样品的晶体结构、宏观磁性和纳米颗粒的表面各向异性进行了分析研究.XRD和中子衍射测量结果显示纳米颗粒的晶格常数略高于块体材料,样品的氧参量表明纳米颗粒的晶格畸变程度没有块体材料严重.相对块体材料,纳米颗粒具有较小的磁化强度、较大的矫顽力和各向异性能密度.纳米颗粒从多畴转变为单畴的临界尺寸约为40nm,超顺磁性临界尺寸约为16nm.  相似文献   

7.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

8.
金灿  朱骏  毛翔宇  何军辉  陈小兵 《物理学报》2006,55(7):3716-3720
用传统的固相烧结工艺,制备了钼掺杂铁电陶瓷样品SrBi4Ti4O15(SBTi)铁电陶瓷SrBi4-2x/3Ti4-xMoxO15(x=0.00,0.003,0.012,0.03,0.06,0.09).X射线衍射的结果表明,样品均为单一的层状钙钛矿结构相,Mo掺杂未改变SBTi的晶体结构.通过扫描电子显微镜观测发现,样品晶粒为片状,随掺杂量的增加,晶粒逐 关键词: 4Ti4O15')" href="#">SrBi4Ti4O15 Mo掺杂 剩余极化 居里温度  相似文献   

9.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

10.
Ho3Fe5O12 ceramics with garnet structure were prepared by the solid-state reaction method. The results revealed the existence of Fe2+ ions have intensive influence on dielectric and magnetic properties of Ho3Fe5O12 ceramics, which could be further confirmed by oxygen treatment. With a magnetic field lower than 10 kOe, the ME coefficient reaches 33 ps m−1 at room temperature. And the ME coupling was further verified by dielectric anomaly near Néel temperature.  相似文献   

11.
慕春红  刘鹏  贺颖  张丹  孟玲  边小兵 《物理学报》2008,57(4):2432-2437
采用固相反应法制备了CaCu3Ti4-xFexO12(0≤x≤0.2)陶瓷,通过X射线衍射、扫描电子显微镜、介电频谱和阻抗谱等手段研究了Fe对CaCu3Ti4O12陶瓷的结构和介电性能的影响.研究发现:CaCu3Ti4-xFex关键词: 巨介电常数 双阻挡层电容模型 界面极化  相似文献   

12.
Nano-sized NiFe2−xLaxO4 ferrites (x=0.00, 0.01, 0.02, 0.03, 0.04, 0.5, 0.07 and 0.09) were synthesized for the first time by using metal nitrate and egg-white extract in aqueous medium. The ferrites were characterized by DTA-TG, XRD, TEM, FT-IR and VSM techniques. The thermal decomposition behavior revealed that the precursors were completely decomposed at about 420 °C. TEM image shows agglomerated nanoparticles with crystallite sizes agrees well with that estimated by XRD measurement. XRD patterns show a secondary phase of LaFeO3 besides the cubic structure of the La-substituted ferrites. The lattice parameters, X-ray density and crystallite size were found to increase with the increasing La content. The VSM measurement exhibited a ferromagnetic property for all the samples at room temperature. With increasing La, Ms was found to decrease while Hc increased. The decrease in the saturation magnetization is attributed to the paramagnetic properties of lanthanum, which prefer to substitute iron present in the octahedral sites. The increase in the coercivity is due to either the stronger magnetocrystalline anisotropy induced by La substitution or the change in the crystallite size.  相似文献   

13.
NiFe2O4/SiO2 nanocomposites were prepared using a sol–gel method with the addition of 3-aminopropyltrimethoxysilane (APS). Different phases and morphologies of NiFe2O4/SiO2 nanocomposites were obtained when different amounts of APS were used. The structural properties of the products were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Sheet-like morphology was observed at higher molar ratio of APS to NiFe2O4, while spherical NiFe2O4/SiO2 nanoparticles separated from each other were formed at lower molar ratio of APS to NiFe2O4. The magnetic properties of the nanocomposites were also investigated, indicating that the interparticle interactions exhibit strong dependence on the molar ratio of APS to NiFe2O4.  相似文献   

14.
The non-isothermal decomposition of NiC2O4·2H2O-FeC2O4·2H2O (1:2 mole ratio) mixture was studied on heating to the formation of NiO-Fe2O3 mixture at 350 °C in air atmosphere using thermogravimetry. Kinetic analysis of data according to the integral composite method showed that the oxidative decomposition of FeC2O4 and NiC2O4 are best described by the three-dimensional phase boundary model. The activation parameters were calculated and discussed. The solid products at different decomposition stages were identified using XRD, Mössbauer and FT-IR spectroscopic techniques. Some characteristic XRD lines of NiFe2O4 start to appear at 800 °C beside the characteristic lines of NiO and Fe2O3, whereas at 1000 °C, only the characteristic lines of single phase cubic NiFe2O4 appeared. The Mössbauer spectrum at 1000 °C fitted into two Zeeman sextets characteristic of Fe3+ on the tetrahedral (A) and octahedral (B) sites of NiFe2O4 inverse spinel. Consistent results were obtained using FT-IR where the absorption bands appeared at 602 and 407 cm−1 for the mixture calcined at 1000 °C. These can be assigned to the intrinsic vibrations of tetrahedral and octahedral sites of NiFe2O4, respectively.  相似文献   

15.
A sample of Gd2CuO4 (GCO) has been prepared through the solid state reaction technique. Dielectric properties of this material have been measured in detail as functions of temperature (between 285 and 450 K) and frequency (20 Hz-10 MHz). A step-like increase below 330 K and a broad peak around 360 K were observed in the real part of the permittivity (ε′) which were found to be originated from the oxygen vacancy hopping motions that cause a dipolar relaxation, followed by a Maxwell-Wagner relaxation as the hopping carriers are blocked by the interfaces and surfaces of the sample.  相似文献   

16.
Exchange bias (EB) and magnetic properties of ferrimagnetic (FI) NiFe2O4 and antiferromagnetic (AFM) NiO bulk composites, prepared by a chemical co-precipitation and post-thermal decomposition method from Fe-doped NiO matrix, have been investigated. Enhanced coercivities and shifted hysteresis loops are still observed for these samples after field cooling. But the vertical magnetization shifts are not observed. In comparison with the bulk samples, a NiO/10% NiFe2O4 nanocomposite was also prepared via direct mixture, in which both the horizontal and vertical shift in the hysteresis loops are observed at 10 K. The observed phenomena are explained in terms of interfacial exchange interaction between the two phases and the finite-size effect, respectively.  相似文献   

17.
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.  相似文献   

18.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

19.
NiFe2O4 nanoparticles were synthesized by the polyacrylamide gel method with acrylamide as the monomer and N,N′-methylenediacrylamide as lattice agent. The average crystallite sizes of the nickel ferrites annealed at 500, 600 and 800 °C are about 10, 30 and 50 nm, respectively. Ferrite-polystyrene composites were made by hot pressing, and microwave-absorbing properties of the composites with different contents of 35, 45, 55 and 65 wt% ferrite were investigated by testing complex permeability and complex permittivity in the X-band (8.2-12.4 GHz) frequency range. All the parameters, ε′, ε″, μ′ and μ″, increase with increasing ferrite content. The reflection losses were calculated based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 65 wt% ferrite content shows a minimum reflection loss of −13 dB at 11.5 GHz with a −10 dB bandwidth over the extended frequency range of 10.3-13 GHz for an absorber thickness of 2 mm.  相似文献   

20.
Single phase ceramics CaCu3Ti4.0O12 and CaCu3Ti3.9O12 have been prepared using the traditional solid-state reaction method. Compared with the stoichiometric ceramics CaCu3Ti4.0O12, Ti-deficient ceramics CaCu3Ti3.9O12 have the larger lattice parameter, the higher force constant, and smaller dielectric constant and the lower dissipation factor, although their fundamental characters of dielectric response are similar. Their characteristic relaxation frequencies are not well fitted with the Arrhenius Law but a tentatively supposed relation. With the Cole-Cole Law, the fitted broadened factors of dissipation peaks are 0.5433 and 0.8651 for CaCu3Ti3.9O12 and CaCu3Ti4.0O12, respectively. All facts mentioned above imply that mutually correlated motion of Ti ions or defects may be expected to be responsible for the giant dielectric constant and high dissipation factor of CaCu3Ti4.0O12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号