首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Studies of purine absorption and emission in seven solvents differing greatly in dielectric constant and hydrogen bonding potential, reveal a variety of solvent effects. For example, the resolution of structure in the absorption spectrum, the position and/or intensity of the X2 absorption band, the intensity of fluorescence, the magnitude of the long wave-lenth tail, and the position of the X1 absorption band are differentially affected—in the order listed—by the solvents tested. Even though it is possible to correlate the extent of decrease in the n-π* tail with increasing solvent dielectric constant, probably alterations in all of these spectroscopic parameters depend most critically upon the ability of the various solvents to form hydrogen bonds with the hydrogen on N9 and/for with the non-bonding electrons on the purine nitrogens: it is tentatively concluded that the probability of hydrogen bonding is directly correlated with the electronegativity of the aza nitrogens (N7 > N3 > N1). In solvents like isopropanol not all of the non-bonding electrons must be solvated maximally in most purine molecules since there is appreciable fluorescence under conditions where a long wavelength tail is readily observed in the absorption spectrum (alternatively some noa-bonding electrons may not te relevant to fluorescence quenching.) Decreases in fluorescence yield are associated with red shifts in the fluorescence maximum, and in the solvents of highest polarity the fluorescence yield is again small indicating that glycerol and water can enhance radiationless tunneling—presumably by altering Franck-Condon configurations and/or improving electronic-vibrational coupling between solute and solvent. The quantum yield is uniform throughout the atsorption band for a given solvent, but studies in aqueous buffers varying from pH 1 to 11 show that the fluorescence yield is greater for charged than for neutral molecules. Further, the fluorescence excitation peak is red shifted in powders. Since phosphorescence is the predominant emission at 777deg;K and increases in fluorescence can be correlated with the presumed solvation of non-bonding electrons, the singlet excited state of lowest energy in ‘unperturbed’ purine must be n-π* in nature. The shape of the phosphorescence band and the decay lifetime of ? 1 sec at 77°K lead to the conclusion that the emitting triplet is a π-π* state. The eight vibrational structures in phosphorescence emission can be readily grouped into two progressions: there is an average separation of about 1300 cm-1 between peaks within a given progression, and the two sets are mutually displaced by about 500 cm-l. Individual vibrational peaks are favoured in different solvents and the whole band may be shifted up to 500 cm-l. Even larger shifts are observed in charged purine molecules and in powders (up to 3000 cm-l) and the presumed 0–0 band is not observed.  相似文献   

2.
The correlation of dibutyl-ether-ester of xanthene dye structures with their photophysical properties is discussed with respect to their capability as fluorescent probes based on ultraviolet–visible absorption, fluorescence spectra and fluorescence lifetimes measured in different solvents. It was found that the dibutyl-ether-ester of fluorescein is very weakly emissive in aprotic solvents, but fairly strong fluorescent in alcohols. The dependence of fluorescence quantum yield (Φf) and lifetime (τf) on solvent polarity suggests non-involvement of the intra-molecular photoinduced electron transfer (PeT) mechanism, suggested previously to account for the emission efficiency of fluorescein derivatives. The xanthene dyes intend to self-assemble in aprotic solvents, less polar solvents facilitate the aggregation while hydrogen bonding disfavor it. The formation of non-emissive H-aggregates is proposed to be responsible for their fluorescent behavior. The esterification showed stronger influences on the photophysics than the etherification, i.e. the former caused larger reduction of Φf owing to the internal conversion. The halogenation decreases the fluorescence quantum yield and lifetime of the xanthene dyes, owing to the enhancement of inter-system crossing process.  相似文献   

3.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

4.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

5.
Emissive properties for the cationic exciplex (A+*/D→A.D.+) of an isoquinolinium cation tethered to a substituted arene ( 1+ ) are strongly affected by hydrogen bonding solvents. At equal dielectric constant (ϵ), the ground-to-excited state energy gaps (ΔG) and solvent reorganization energies (λs) decrease from nitriles to aliphatic alcohols. The corresponding decrease from aliphatic alcohols to high hydrogen bond acidity solvents is ∼3 times larger. The exciplex decay (kEx), largely determined by unfolding of the exciplex to a stretched conformer, changes in a complex way depending on the strength of the hydrogen bond ability of these solvents. In contrast, the electronic couplings between the exciplex ground, excited, and charge transfer states do not show a solvent functionality dependence.  相似文献   

6.
The time-dependent density functional theory (TDDFT) method has been carried out to study the influences of hydrogen bonding and solvent polarity on the spectral properties of 4-aminophthalimide (4AP) clusters formed with hydrogen-accepting solvents triethylamine (TEA) and dimethyl sulfoxide (DMSO). The ground- and S1-state geometry structure optimizations, hydrogen bond energies, absorption and emission spectra for both the 4AP monomer and its two triply hydrogen-bonded clusters 4AP + (TEA)3 and 4AP + (DMSO)3 have been calculated using DFT and TDDFT methods respectively with the hybrid exchange correlation functional PBE1PBE and split-valence basis set 6-311++G(d,p). It has been demonstrated that the two hydrogen bonds I and II formed with the amine group of 4AP are significantly strengthened while the hydrogen bond III formed with the imide group is slightly weakened due to the intramolecular charge transfer from the amine group to the two carbonyl groups of the 4AP molecule upon photoexcitation. In addition, the hydrogen bonds formed by 4AP with DMSO are stronger than those formed with TEA, which together with its strong polarity, should be the main reasons for the more redshifts of both the absorption and the fluorescence spectra of 4AP in solvent DMSO than those in TEA.  相似文献   

7.
Experimental results on various photophysical properties of coumarin‐30 (C30) dye, namely, Stokes' shift (Δv), fluorescence quantum yield (τf), fluorescence lifetime (τf), radiative rate constant (kf) and nonradiative rate constant (knr), as obtained using absorption and fluorescence measurements have been reported. Though in most of the solvents the properties of C30 show more or less linear correlation with the solvent polarity function, Δf= [(ε ‐ 1)/(2ε+ 1) ‐ (n2 ‐ 1)/ (2n2+ l)], they show unusual deviations in nonpolar solvents at one end and in high‐polarity protic solvents at the other end. From the solvent polarity and temperature effect on the photophysical properties of the dye, following inferences have been drawn: ( 1 ) in nonpolar solvents, the dye exists in a nonpolar structure, where its 7‐NEt2 substituent adopts a pyramidal configuration and the amino lone pair is out of resonance with the benzopyrone π cloud; ( 2 ) in medium to higher polarity solvents, the dye exists in a polar intra‐molecular charge transfer structure, where the 7‐NEt2 group and the 1,2‐benzopyrone moiety are in the same plane and the amino lone pair is in resonance with the benzopyrone π cloud; ( 3 ) in protic solvents, the dye‐solvent intermolecular hydrogen bonding influences the photophysical properties of the dye; and ( 4 ) in high‐polarity protic solvents, the excited C30 undergoes a new activation‐controlled nonradiative deexcitation process because of the involvement of a twisted intra‐molecular charge transfer (TICT) state. Contrary to most other TICT molecules, the activation barrier for this deexcitation process in C30 is observed to increase with solvent polarity. A rational for this unusual behavior has been given on the basis of the solvent polarity‐dependent stabilization and crossing of relevant electronic states and the relative propensity of interconversion among these states.  相似文献   

8.
Amide-rotational barriers obtained with a total line shape analysis of a series of para-substituted N,N-dimethylbenzamides and -cinnamamides are correlated with the result of an H. M. O. (Ω = 1·4) calculation. There is no difference in the activation parameters at a concentration of 0·25 M and 1 M in CDCI3 as a solvent. Despite the lower solvent polarity of chloroform (ε = 4·7) compared with acetonitrile (ε = 37·5) the rotational barriers in both solvents are about equal, probably due to hydrogen bonding in chloroform. The amide rotation rate appears to be very sensitive to traces of hydrochloric acid in a non-basic solvent like chloroform.  相似文献   

9.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

10.
The absorption and fluorescence properties of nifedipine (NPDHP), felodipine (CPDHP) and a series of structurally related 1,4-dihydropyridines were studied in aqueous solution and organic solvents of different properties. The absorption and fluorescence spectra were found to depend on the chemical nature of the substituents at the position 4 of the 1,4-dihydropyridine ring (DHP) and on solvent properties. In aqueous solution, the fluorescence spectra of 4-phenyl substituted compounds are blue-shifted with respect to the alkyl substituted compounds. The more fluorescent compound is CPDHP. Nifedipine is not fluorescent. All compounds, with the exception of CPDHP, present monoexponential fluorescence decay with very short lifetime (0.2-0.4 ns). CPDHP showed a biexponential emission decay with a long-lived component of 1.7 ns; this behavior is explained in terms of different conformers because of the hindered rotation of the phenyl group by the ortho-substitution. Analysis of the solvent effect on the maximum of the absorption spectrum by using the linear solvent-energy relation solvato-chromic equation indicates the redshifts are influenced by the polarizability, hydrogen bonding ability and the hydrogen bond acceptance of the solvent. Whereas, the fluorescence characteristics (spectra, quantum yields and lifetimes) are sensitive to the polarizabilty and hydrogen bond ability of the solvents. Photo-decomposition of nifedipine is dependent on the solvent properties. Faster decomposition rates were obtained in nonprotic solvents. The 4-carboxylic derivative goes to decarboxylation. Under similar conditions, the other DHP compounds did not show appreciable photodecomposition.  相似文献   

11.
The effect of both solvent polarity and hydrogen bonding (HB) on the electronic transition energy of Coumarin 102 (C102) has been examined using the time‐dependent density functional theory (TDDFT). Solvent effect on both geometry and electronic transition energy is evaluated using the polarizable continuum model (PCM). A linear relation of the absorption maximum of C102 with the solvent polarity function Δf is found using the TDDFT‐PCM method for all solvents except dimethyl sulfoxide. The solvent polarity and the type B HB between the carbonyl oxygen and solvent hydrogen atom make the absorption wavelength redshift, whereas the type A HB between the amino nitrogen atom and solvent hydrogen atom has an opposite effect on the absorption wavelength. The calculated absorption wavelengths of C102 with two type B HB between the carbonyl oxygen and solvent hydrogen atom are in excellent agreement with experimental measurements. The solvatochromism of C102 is analyzed in terms of the Kamlet–Taft equation and the parameters s and a are discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   

12.
The absorption spectra of nine compounds structurally related to phenytoin (5,5-diphenylhydantoin) were recorded in twelve solvents over the range of 200 to 400 nm. The effects of solvent dipolarity/polarizability and solvent/solute hydrogen bonding interactions were analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The lipophilic activity of the investigated hydantoins was estimated by calculation of their log 10 P values. The calculated values of log 10 P were correlated with the ratio of the contributions of specific and non-specific solute/solvent interactions. The correlation equations were combined with the corresponding ED50 values to generate new equations that demonstrate exact relationship between solute/solvent interactions and the structure-activity parameters.  相似文献   

13.
The rate constant k CO of decarbonylation of phenylacetyl radicals generated by photolysis of dibenzyl ketone was measured by laser flash photolysis technique in six solvents in a wide temperature range. The pre-exponential factors A and activation energies E a of decarbonylation were found for all solvents. The k CO value decreases with an increase in the dielectric constant of the solvent, whereas an increase in the ability of the solvent for hydrogen bonding increases k CO. The results of quantum-chemical calculations confirm the mutual compensation of the contributions of specific and nonspecific solvations to the activation energy of decarbonylation in alcohols.  相似文献   

14.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation.  相似文献   

15.
Spectroscopic studies on benzo[b]fluorenone (BF) solvatochromism in several aprotic and alcoholic solvents have been performed to investigate the fluorescence quenching by hydrogen bonding and proposed a weaker ability to form intermolecular hydrogen bond of BF than fluorenone (FN). In this work, the time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of both FN and BF in ethanol (EtOH) solvent. As a result, it is demonstrated by our theoretical calculations that the hydrogen bond of BF–EtOH complex is almost identical with that of FN–EtOH. Moreover, the fluorescence quantum yields of FN and BF in the alcoholic solvent is efficiently dependent on the energy gap between the lowest excited singlet state (fluorescent state) and ground state, which can be used to explain the fluorescence quenching by the excited-state hydrogen bond strengthening.  相似文献   

16.
The photophysical properties of 7‐(diethylamino) coumarin‐3‐carboxylic acid (7‐DCCA) were studied in cyclodextrins (α, β, γ,‐CDs), different neat solvents and solvent mixtures by using steady state absorption, emission and time‐resolved fluorescence spectroscopy. We have observed that with gradual increase in concentration of β‐CD the fluorescence quantum yield and lifetime decreased in a regular pattern whereas with gradual increase in concentration of γ‐CD the fluorescence quantum yield and lifetime gradually increased. With addition of urea, the fluorescence quantum yield and lifetime of 7‐DCCA in CDs increased. Binding constant calculation shows that 7‐DDCA forms 1:1 complex with β‐CD and with γ‐CD it forms 1:1 and 1:2 (guest:host) inclusion complex. We proposed that the dye molecule formed capping complex with β‐CD by means of hydrogen bonding and after addition of urea the hydrogen bonding network broke down and part of dye molecule entered inside the cavity of β‐CD. The photophysics of 7‐DCCA was studied in dioxane‐water mixture and ethylene glycol‐acetonitrile mixture to know the effect of polarity and viscosity of the media. The photophysics of 7‐DCCA was also studied in different neat solvents. It was found that the photophysics of 7‐DCCA depended on the structural feature of the solvents and solvent mixtures.  相似文献   

17.
Pulsed laser polymerizations were used to study the propagation kinetics of hydroxypropyl methacrylate (HPMA) in ionic liquids (ILs) and common organic solvents. The functional monomer was chosen to investigate the complex interplay of all interactions between monomer molecules and between monomer and solvent molecules and to obtain a deeper understanding of the impact of these interactions. The solvent effect on the HPMA propagation rate coefficient (kp) was examined using a linear solvation energy relationship (LSER) based on Kamlet‐Taft solvatochromic parameters π*, α, and β. The results suggest that dipolarity/polarizability, associated with π*, and hydrogen bond–donating ability of the solvents, accounted for by α, majorly contribute to variations in kp. Hydrogen bond–accepting (electron pair donating) ability of the solvents (β parameter) is of much lesser importance. In addition, LSER enables the prediction of HPMA kp based on solvatochromic parameters of the solvents. The results suggest that interactions between the hydroxyl group of the monomer and the anion are dominant compared with classical hydrogen bonding between carbonyl and hydroxyl groups of the monomer units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3188–3199, 2010  相似文献   

18.
The larger photobiological activity of visnagin (VI) versus khellin (KH) toward several living organisms, including fungi, viruses, yeasts and bacteria, induced a detailed investigation of the photophysical properties of these naturally occurring furanochromones, using laser-flash-photolysis, photoacoustic calorimetry and fluorescence (steady-state and time-resolved) techniques in solvents with different polarity and content of water, including micelles and vesicles. The results have shown that the magnitude of all the three rate constants out of S1 (radiative, kf; internal conversion, kic and intersystem crossing, kisc) for VI and KH strongly depend on the solvent, namely on its hydrogen bonding ability and polarity. The changes of kf and kisc are due to the solvent-assisted mixing and/or inversion of the two first singlet excited states (1n,π* and 1π,π*), while kic increases with a decrease of the So–S1 energy gap. As a consequence, the quantum yield of triplet formation (φT) strongly decreases from values of ?0.8 in dioxane to < 0.05 in water for both compounds. The magnitude of solvent polarity/hydrogen bonding ability required, at which the state order is inverted and φT starts to decrease, is greater for VI than for KH and consequently φT (VI) > φT (KH) over a broad range of water content including that appropriate to the environment of the compounds in a living system. These facts account for the larger photobiological activity of VI with respect to KH, regarding both the fungus Fusarium culmorum L. and the wild strain of Escherichia coli, studied by us.  相似文献   

19.
Azo-hydrazone tautomerism is a phenomenon that occurs in azo dyes possessing substituents conjugated to the azo linkage which has labile proton that can be exchanged intramolecularly. Thus the predominance of one tautomer over another is a function of many factors among which are solvent polarity, solvent type, solute-solvent interactions and the structure of the dye molecule itself. The 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes, previously shown to exhibit azo-hydrazone tautomerism, were studied for the relative predominance of one form over another based on interaction at the microenvironment of binary solvent mixtures containing DMF and non-hydrogen bonding (CCl(4)), hydrogen bond donor (toluene, chloroform), hydrogen bond acceptor (acetonitrile, acetone) and the alcohols; ethanol and methanol as solvent pairs. The three dyes gave two main bands in the 50:50 mixture of DMF with these solvents consisting of a high energy band at 250-382 nm while the low energy bands for the dyes occurred at 415-485 nm. Spectral shifts in the binary solvent mixtures were related to the solvent dipolarity, basicity of the less polar component relative to DMF, substituent type, molar transition energy, formation constant for the hydrogen-bonding solvated complexes and the standard free energy change for hydrogen bonding with DMF. The relative predominance of the hydrazone tautomer bears a direct relationship to the basicity of the solvent, presence of hydrogen bond donor substituent and was associated with high molar transition energies and low formation constant. The microenvironment surrounding the dye molecules played a major role in the stability of one tautomer relative to the other.  相似文献   

20.
Excitation wavelength-dependent emission spectra of 4-methyl-2,6-diformylphenol (MFOH) and o-hydroxybenzaldehyde (OHBA) have been examined both in pure weakly polar aprotic solvents and in the presence of a base at room temperature and 77 K. It is shown that fluorescence quantum yield shape, position of the spectra, and number of conformers are dependent upon the excitation energy and also on the proton-accepting ability of the solvents. Fluorescence spectra cannot be correlated with the solvent dielectric properties. At 77 K, deactivation occurs via phosphorescence only at a particular experimental condition in all the solvents studied here. The decay rates are relatively slower in an environment where the probability of hydrogen bonding interaction is stronger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号