首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Electron paramagnetic resonance (EPR) studies have been carried out on VO2+ ions doped in single crystals of ferroelectric material, potassium thiourea bromide (PTB) at room temperature and in the temperature range 103–343 K on X-band MW frequency. An isotropic octet spectrum characteristic of VO2+ ion was obtained due to the fast re-orientation of the VO2+ in PTB lattice, which exhibits glassy nature at certain range around room temperature. The temperature dependant EPR spectra of VO2+ ions in this host lattice has been attributed to the occurrence of multiple phase transitions due to the combined environment effects of KBr and thiourea materials in the single crystal. From the optical absorption spectrum, the crystal field splitting parameter Dq, tetragonal parameters Ds and Dt have been evaluated and discussed.  相似文献   

2.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

3.
Electron Paramagnetic Resonance (EPR) and optical absorption spectra of Cr3+ ions doped in single crystals of zinc maleate tetrahydrate (ZMTH) have been studied at room temperature (300 K). The EPR spectra exhibit a group of three fine structure transitions, characteristic of the Cr3+ ion. From the observed EPR spectra, the spin-Hamiltonian and zero-field splitting parameters have been determined. The optical absorption spectrum exhibits two broad bands characteristic of Cr3+ ions in octahedral symmetry. From the observed spectrum, the crystal field parameters have been evaluated.  相似文献   

4.
EPR, optical, infrared and Raman spectral studies of Actinolite mineral   总被引:1,自引:0,他引:1  
Electron paramagnetic resonance (EPR), optical, infrared and Raman spectral studies have been performed on a natural Actinolite mineral. The room temperature EPR spectrum reveals the presence of Mn(2+) and Fe(3+) ions giving rise to two resonance signals at g = 2.0 and 4.3, respectively. The resonance signal at g = 2.0 exhibits a six line hyperfine structure characteristic of Mn(2+) ions. EPR spectra have been studied at different temperatures from 123 to 433 K. The number of spins (N) participating in the resonance at g = 2.0 has been calculated at different temperatures. A linear relationship is observed between log N and 1/T in accordance with Boltzmann law and the activation energy was calculated. The paramagnetic susceptibility (chi) has been calculated at different temperatures and is found to be increasing with decreasing temperature as expected from Curie's law. From the graph of 1/chi versus T, the Curie constant and Curie temperature have been evaluated. The optical absorption spectrum exhibits bands characteristic of Fe(2+) and Fe(3+) ions. The crystal field parameter Dq and the Racah parameters B and C have been evaluated from the optical absorption spectrum. The infrared spectral studies reveal the formation of Fe(3+)--OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si--O--Si stretching and Mg?OH translation modes.  相似文献   

5.
EPR and optical absorption spectra of Cr3+ ions doped in KZnClSO4 x 3H2O single crystals have been studied at room temperature. The EPR spectrum exhibits a group of three fine structure transitions characteristic of Cr3+ ions. From the observed EPR spectra, the spin-Hamiltonian parameters have been determined. The optical absorption spectrum exhibits two broad bands characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal field parameters have been evaluated.  相似文献   

6.
The electron paramagnetic resonance (EPR) and infrared (IR) spectral studies have been employed on the periostracum, the prismatic layer and the nacre of the shell of the marine bivalve molluscan Mytilus conradinus of the South Indian origin. All the layers of this shell show Fe3+ ion spin resonance signals in common. The inner layer namely nacre at room temperature shows EPR signals of Fe3+ ions and the heated one exhibits a sextet hyperfine pattern characteristic of Mn2+ ions. The prismatic layer of the shell also exhibits a similar spectrum, but of distinct pattern. The spin-Hamiltonian parameters have been evaluated for the prismatic and nacreous layers of this shell. Infrared spectra of the two main layers of the shell namely prismatic and the nacre exhibit the characteristic bands of CO3(2-) molecular ion in different symmetries of CaCO3.  相似文献   

7.
This paper reports on a novel application of a ligand field model for the detection of the local molecular structure of a coordination complex. By diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand field and the spin-orbit coupling for the d5 configuration ion in a trigonal ligand field, the local distortion structure of the (MnO6)10- coordination complex for Mn2+ ions doped into CaCO3, have been investigated. Both the second-order zero-field splitting parameter b(0)2 and the fourth-order zero-field splitting parameter b(0)4 are taken simultaneously in the structural investigation. From the electron paramagnetic resonance (EPR) calculations, the local structure distortion, DeltaR=-0.169 A to -0.156 A, Deltatheta=0.996 degrees to 1.035 degrees for Mn2+ ions in calcite single crystal, DeltaR=-0.185 A to -0.171 A, Deltatheta=3.139 degrees to 3.184 degrees for Mn2+ ions in travertines, and DeltaR=-0.149 A to -0.102 A, Deltatheta=0.791 degrees to 3.927 degrees for Mn2+ ions in shells are determined, respectively. These results elucidate a microscopic origin of various ligand field parameters which are usually used empirically for the interpretation of EPR and optical absorption experiments. It is found that the theoretical results of the EPR and optical absorption spectra for Mn2+ ions in CaCO3 are in good agreement with the experimental findings. Moreover, to understand the detailed physical and chemical properties of the doped CaCO3, the theoretical values of the fourth-order zero-field splitting parameters b(0)4 for Mn2+ ions in travertines and shells are reported first.  相似文献   

8.
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of ~40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 ?, c=5.27563 ? and V=47.684 (?)(3)) are found to be greater than that of undoped ZnO (a=3.19993 ?, c=5.22546 ? and V=46.336 (?)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at ~3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to (4)T(1)→(6)A(1) transition of Mn(2+) ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to (55)Mn hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn(2+) ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (χ) have been evaluated.  相似文献   

9.
Electron Paramagnetic Resonance (EPR), optical and infrared (IR) spectral studies have been performed on the pure and Cu-adsorbed exoskeletons of marine environment. The EPR spectrum of exoskeletons at room temperature exhibits a sharp signal at g approximately 1.9970. The possible redox mechanisms have been noticed on heating these exoskeletons in which the low spin Mn(3+) reduces to Mn(2+). The optical absorption spectra also give the evidence of the presence of Mn(3+) ions. The effects of thermal sintering on the EPR spectra have been studied and discussed in detail. The Cu-adsorbed samples clearly showed the adsorption of the Cu(2+) ions over CaCO(3) and the redox mechanism in these samples have been monitored by EPR.  相似文献   

10.
Manganese doped nanocrystalline willemite powder phosphors Zn(2-x)Mn(x)SiO(4) (0.1(6)A(1) ground state. The mechanism involved in the generation of a green emission has been explained in detail. The effect of Mn content on luminescence has also been studied.  相似文献   

11.
Electron paramagnetic resonance (EPR) spectra of VO2+ ions doped in Kainite (a mineral salt) single crystals and powder were recorded at room temperature at X-band frequencies.The angular variation studies of the spectra indicate that the VO2+ ion enters Mg2+ ion site substitutionally. The principal values of g and A-tensors were determined from the EPR spectral studies. Using these EPR parameters, the molecular orbital bonding parameters of VO2+ ion in the lattice have been evaluated and discussed.  相似文献   

12.
The EPR zero-field splittings D of Mn(2+) and Fe(3+) ions in anatase crystals at room and low temperatures are calculated from the high-order perturbation formula of zero-field splitting D for 3d(5) ions in tetragonal symmetry based on the dominant spin-orbit coupling mechanism. The calculated results are consistent with the observed values. From the calculations, Mn(2+) and Fe(3+) ions are suggested to substitute for Ti(4+) ions in anatase (in the previous paper, Mn(2+) ion was suggested at an interstitial site rather than substitutional site) and the defect structures (characterized mainly by the local oxygen parameter u) for both tetragonal Mn(2+) and Fe(3+) impurity centers are estimated. The different zero-field splitting at room and low temperatures are due mainly to the change of local oxygen parameter u with the temperature. These results are discussed.  相似文献   

13.
From the high-order perturbation formulas of EPR parameters (zero-field splitting D, g factors gparallel, gperpendicular and hyperfine structure constants Aparallel, Aperpendicular) based on the two spin-orbit coupling parameter model for 3d3 ions in trigonal symmetry, the EPR parameters of Cr3+ and V2+ ions in HfS2 crystals are calculated. From the calculations, it is found that the local trigonal distortion angle theta of impurity center in HfS2:Cr3+ is smaller than that in HfS2:V2+. The dominant cause of the small zero-field splitting |D| and g-anisotropy |Deltag|=|gparallel-gperpendicular| in HfS2:Cr3+ (compound to HfS2:V2+) is due to the small local trigonal distortion angle theta rather than to the small impurity-ligand distance R in HfS2:Cr3+.  相似文献   

14.
MgAl2O4:Mn phosphors have been prepared at 500 °C by combustion route. Powder X-ray diffraction (XRD) indicated the presence of mono-MgAl2O4 phase. Scanning electron microscopy showed that the powder particle crystallites are mostly angular. Fourier transform infrared spectroscopy confirmed the presence of AlO6 group which makes up the MgAl2O4 spinel. Photoluminescence studies showed green/red emission indicating that two independent luminescence channels in this phosphor. The green emission at 518 nm is due to 4T16A1 transition of Mn2+ ions. The emission at 650 nm is due to the charge-transfer deexcitation associated with the Mn ion. EPR spectrum exhibits allowed and forbidden hyperfine structure at g=2.003. The g≈2.00 is due to Mn2+ ion in an environment close to tetrahedral symmetry. It is observed that N and χ increase with decrease of temperature obeying the Boltzmann law. The variation of zero-field splitting parameter (D) with temperature is evaluated and discussed.  相似文献   

15.
Glass systems of composition 90R(2)B(4)O(7)+9PbO+1Fe(2)O(3) (R=Li, Na and K) and 90Li(2)B(4)O(7)+(10-x)PbO+xFe(2)O(3) (x=0.5, 1, 3, 4, 5, 7 and 9 mol %) have been investigated by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The EPR spectra exhibit three resonance signals at g approximately 6.0, 4.2 and 2.0. The resonances at g approximately 6.0 and 4.2 are attributed to Fe(3+) ions in rhombic and axial symmetry sites, respectively. The g approximately 2.0 resonance signal is due to two or more Fe(3+) ions coupled together with dipolar interaction. The EPR spectra of 1 mol % of Fe(2)O(3) doped in lithium lead tetraborate glass samples have been studied at different temperatures (123-433 K). The intensity of g approximately 4.2 resonance signal decreases and the intensity of g approximately 2.0 resonance signal increases with the increase of temperature. The line widths are found to be independent of temperature. The EPR spectra exhibit a marked concentration dependence on iron content. A decrease in intensity for the resonance signal at g approximately 4.2 with increase in iron content for more than 4 mol % has been observed in lithium lead tetraborate glass samples and this has been attributed to the formation of Fe(3+) ion clusters in the glass samples. The paramagnetic susceptibility (chi) is calculated from the EPR data at various temperatures and the Curie constant (C) has been evaluated from 1/chi versus T graph. The optical absorption spectrum of Fe(3+) ions in lithium lead tetraborate glasses exhibits three bands characteristic of Fe(3+) ions in an octahedral symmetry. The crystal field parameter D(q) and the Racah interelectronic repulsion parameters B and C have also been evaluated. The value of interelectronic repulsion parameter B (825 cm(-1)) obtained in the present work suggests that the bonding is moderately covalent.  相似文献   

16.
Natural iowaite, magnesium–ferric oxychloride mineral having light green color originating from Australia has been characterized by EPR, optical, IR, and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands due to both Fe(III) and Mn(II) ions in iowaite. From EPR studies, the g values are calculated for Fe(III) and g and A values for Mn(II). EPR and optical absorption studies confirm that Fe(III) and Mn(II) are in distorted octahedral geometry. The bands that appear both in NIR and Raman spectra are due to the overtones and combinations of water and carbonate molecules. Thus EPR, optical, and Raman spectroscopy have proven most useful for the study of the chemistry of natural iowaite and chemical changes in the mineral.  相似文献   

17.
By applying the high-order perturbation formulas based on the cluster approach for the EPR parameters of 3d2 ions in trigonal symmetry, the zero-field splitting D, g factors gparallel, gperpendicular, and hyperfine structure constants Aparallel, Aperpendicular for Ti2+ and V3+ ions in CdS crystals are studied. From the studies, the defect structures of these paramagnetic impurity centers are obtained and the EPR parameters are also explained reasonably.  相似文献   

18.
The complete high-order perturbation formulas of EPR parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D), containing the crystal-field (CF) mechanism and charge-transfer (CT) mechanism (the latter is omitted in crystal-field theory which is often used to study the EPR parameters), are established from a cluster approach for 3d3 ions in tetragonal octahedral sites. According to the calculations based on these formulas, the EPR parameters g( parallel), g( perpendicular) and zero-field splitting D for Cr3+ and Mn4+ ions in PbTiO3 crystals are explained reasonably. The calculations show that (i) the sign of g-shift Deltag(i)(CT) (=g(i)-g(s), where g(s)=2.0023 is free-electron value and i= parallel and perpendicular) in CT mechanism is opposite to, but that of D(CT) is the same as, the corresponding signs in the CF mechanism and (ii) the relative importance of CT mechanism for the high valence state 3d3 ion (e.g., Mn4+) is large and so the contributions to EPR parameters from CT mechanism should be taken into account. The different sign of splitting D and the different defect structure for Cr3+ and Mn4+ impurity centers in PbTiO3 crystals are also suggested from the calculations. The results are discussed.  相似文献   

19.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

20.
Pascoite mineral having yellow-orange colour of Colorado, USA origin has been characterized by EPR, optical and NIR spectroscopy. The colour dark red-orange to yellow-orange colour of the pascoite indicates that the mineral contain mixed valency of vanadium. The optical spectrum exhibits a number of electronic bands due to presence of VO(II) ions in the mineral. From EPR studies, the parameters of g, A are evaluated and the data confirm that the ion is in distorted octahedron. Optical absorption studies reveal that two sets of VO(II) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号