首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of Li2MO3 (M=Ir, Pt) can be derived from the well-known Li-ion battery cathode material, LiCoO2, through ordering of Li+ and M4+ ions in the layers that are exclusively occupied by cobalt in LiCoO2. The additional cation ordering lowers the symmetry from rhombohedral (R-3m) to monoclinic (C2/m). Unlike Li2RuO3 no evidence is found for a further distortion of the structure driven by formation of metal-metal bonds. Thermal analysis studies coupled with both ex-situ and in-situ X-ray diffraction measurements show that these compounds are stable up to temperatures approaching 1375 K in O2, N2, and air, but decompose at much lower temperatures in forming gas (5% H2:95% N2) due to reduction of the transition metal to its elemental form. Li2IrO3 undergoes a slightly more complicated decomposition in reducing atmospheres, which appears to involve loss of oxygen prior to collapse of the layered Li2IrO3 structure. Electrical measurements, UV-visible reflectance spectroscopy and electronic band structure calculations show that Li2IrO3 is metallic, while Li2PtO3 is a semiconductor, with a band gap of 2.3 eV.  相似文献   

2.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

3.
Li[Li0.23Co0.3Mn0.47]O2 cathode material was prepared by a sol–gel method. The material had a primary particle size of about 100 nm, covered by a 30 Å of Li2CO3 layer. The material showed promising electrochemical performance when cycled up to 3C rate. The electrochemical kinetics of the first charge was much slower than that of the second charge, due to the complex electrochemical process which involved not only Li+ diffusion but also release of oxygen. By taking account of this, the material was pre-charged very slowly (C/50) in the first cycle. This led to excellent electrochemical performance in the following cycles. For instance, the 1C-rate capacity increased to 168 mA h g−1 after 50 cycles, comparing with the 145 mA h g−1 obtained without pre-charging.  相似文献   

4.
18O/16O isotope exchange depth profiling (IEDP) combined with secondary ion mass spectrometry (SIMS) has been used to measure the oxygen tracer diffusivity of SrCe0.95Yb0.05O3– between 800 °C and 500 °C at a nominal pressure of 200 mbar. The values of D* (oxygen tracer diffusion coefficient) and k (surface exchange coefficient) increase steadily with increasing temperature, and the activation energies are 1.13 eV and 0.96 eV, respectively. Oxygen ion conductivities have been calculated using the Nernst–Einstein equation. The transport number for oxide ions at 769 °C, the highest temperature studied, is only ~0.05. Moreover, SrCe0.95Yb0.05O3– has been studied using impedance spectroscopy under dry O2, wet O2 and wet H2 (N2/10% H2) atmospheres, over the range 850–300 °C. Above ~550 °C, SrCe0.95Yb0.05O3– shows higher conductivity in dry O2 than in wet O2 or wet H2; below that temperature the results obtained for the three atmospheres are comparable. Dry O2 shows the highest activation energy (0.77 eV); the activation energies for wet O2 and wet H2 are identical (0.62 eV).Abbreviations HTPC high-temperature proton conductor - IEDP isotope exchange depth profiling - SIMS secondary ion mass spectrometryPresented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   

5.
The garnets Li3Nd3W2O12 and Li5La3Sb2O12 have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950 °C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group with lattice parameters a=12.46869(9) Å (Li3Nd3W2O12) and a=12.8518(3) Å (Li5La3Sb2O12). Li3Nd3W2O12 contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li5La3Sb2O12 contains partial occupation of lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d0 and d10 phases shows that replacement of a d0 cation with d10 cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.  相似文献   

6.
利用聚乙烯吡咯烷酮(PVP)作为聚合物配位剂和燃料,通过凝胶-燃烧法合成了Li1.07Mn1.93O4纳米片.采用热重/差热分析(TG/DTA)研究了凝胶的燃烧过程.采用X射线多晶衍射(XRD)分析了材料的结构,结果表明合成的Li1.07Mn1.93O4结晶完整,无杂质相.扫描电镜(SEM)结果显示材料的二次形貌为厚度约100nm的片状,由大小约100nm的一次颗粒构成.充放电测试表明Li1.07Mn1.93O4纳米片具备极佳的倍率放电性能和优秀的循环性能.0.5C(1C=120mA.g-1)倍率的初始放电容量为115.4mAh.g-1,即使倍率增大到40C,放电容量仍有105.3mAh.g-1.在10C倍率的放电条件下,循环850次容量保持率为81%.电化学阻抗谱(EIS)测试表明Li1.07Mn1.93O4纳米片的界面电荷转移电阻(Rct)远小于同类商业材料.  相似文献   

7.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

8.
介绍了一种先冷冻干燥后固相烧结制备正极材料Li2FeP2O7的方法. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)对材料的组成和形态进行表征, 并通过循环伏安曲线(CV)和电化学阻抗谱(EIS)研究了Li2FeP2O7材料的电化学性能. 研究发现, 合成Li2FeP2O7的最佳温度为590 ℃, 此温度下反应较完全且产物杂质较少, 1.6C倍率下的放电比容量达到55 mA·h·g?1, 明显高于其它温度下合成样品的放电比容量. 该温度下合成的Li2FeP2O7还具有低阻抗和较大的交换电流密度, 说明这种合成方式有利于提高锂离子在Li2FeP2O7中的扩散.  相似文献   

9.
Lithium metasilicate (Li2SiO3) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li2SiO3 powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li2SiO3 single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li2SiO3 powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Finally, different thermal analyses showed that Li2SiO3 samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics.  相似文献   

10.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

11.
This work reports the thermal dehydration of the oxocarbonic salt Li2C5O5·2H2O studied by IR and Raman spectroscopy, by ex situ and in situ techniques. The loss of the crystallization water is not only reflected by the disappearing of the pertinent bands, but also by the change in the crystalline phase, as evidenced by the alteration in the splitting pattern of the oxocarbon modes and by differential scanning calorimetry. In the anhydrous salt spectra, a great number of overtones and combination bands appear in the 2000–4000 cm−1 region, indicating an increased anharmonicity. The enhanced splitting suggests that the anhydrous phase belongs to a less symmetric unit cell. The tetrahedral environment around the lithium ion is preserved, as suggested by the shifts of some modes in the 300–600 cm−1 region on isotopic substitution from 7Li to 6Li. Raman and thermoanalytical data seem to indicate that the crystallization water is released in a single-step process.  相似文献   

12.
In this paper, we report the discovery of superconductivity in Li3Ca2C6. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors [T. Enoki, S. Masatsugu, E. Morinobu, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003]. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li3Ca2C6 is a ternary GIC [S. Pruvost, C. Hérold, A. Hérold, P. Lagrange, Eur. J. Inorg. Chem. 8 (2004) 1661-1667], for which the intercalated sheets are very thick and poly layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC6 GIC [T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41; N. Emery, C. Hérold, M. d’Astuto, V. Garcia, Ch. Bellin, J.F. Marêché, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95 (2005) 087003] (11.5 K). Both CaC6 and Li3Ca2C6 GICs possess currently the highest transition temperatures among all the GICs.  相似文献   

13.
Li2Rh3B2 has been synthesized at 1000 °C from a stoichiometric mix of rhodium and boron and an excess of lithium. Li2Rh3B2 crystallizes in the orthorhombic space group Pbam (no. 55, Z=2) with room temperature lattice constants a=5.7712(1) Å, b=9.4377(2) Å, c=2.8301(1) Å and cell volume 154.149(6) Å3. The structure was solved from single crystal X-ray diffraction yielding the final R indices (all data) R1=2.8% and wR2=4.7%. The structure is a distortion of the CeCo3B2 structure type, containing a network of Rh6B trigonal prisms and short Li-Li contacts of 2.28(2) Å. Li2Rh3B2 is a diamagnetic metal with a room temperature resistivity of 19 μΩ cm, as determined by magnetic susceptibility and single crystal transport measurements. The measured diamagnetism and electronic structure calculations show that Li2Rh3B2 contains rhodium in a d10 configuration.  相似文献   

14.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

15.
采用水热法制备了系列富锂尖晶石型正极材料Li2+4xMn0.6+2xNi0.6-6xCr0.8O4(x=1/30,1/20,1/15,1/12),通过X射线衍射(XRD)、电感耦合等离子体-原子发射光谱(ICP-AES)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、拉曼光谱、循环伏安(CV)和充放电测试等手段对其结构及电化学性能进行表征.结果表明,所制备的系列材料为富锂型高电压尖晶石结构正极材料,该系列样品在4.7 V左右有放电平台.x=1/15和x=1/12时,样品中的Cr为+3价,没有观测到Cr6+.随着x值的增大,样品中Li离子与过渡金属离子的混排减小,样品的充放电比容量逐渐增大,且2.7 V处的放电平台容量也增加.当x=1/12时,样品具有较好的充放电比容量和倍率特性,首次放电比容量为107.3 mA·h/g,20次循环后容量保持率为84.9%.  相似文献   

16.
Carbon-coated monoclinic Li3V2(PO4)3 (LVP/C) cathode material has been successfully prepared by a novel glycine-assisted sol–gel method. The product is investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and electrochemical method. In the range of 3.0–4.3 V, the LVP/C electrode presents excellent rate capability. It is 125.4 mAh g− 1 that can be delivered at 1 C charge–discharge rate and 99.5 mAh g− 1 is still obtained at 20 C charge–discharge rate. These results demonstrate that the carbon-coated LVP/C composite material prepared via a glycine-assisted sol–gel method has great potential for use in high-power lithium ion batteries.  相似文献   

17.
The synthesis of Li0.30Ca0.35TaO3 perovskite by a Pechini-type polymerizable precursor method is carefully described. The thermal decomposition of the precursor and the formation of a pure perovskite phase were investigated by means of differential thermal analysis-thermogravimetric analysis (DTA-TGA) and XRD techniques. A pure and well-crystallized phase has been obtained at a lower temperature and with a much shorter synthesis time than the phase obtained by conventional solid-state reaction method. The morphology of the powder after heating at 1300 °C was observed by laser granulometry, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Impedance spectroscopy data allowed us to determine the electrical properties, i.e., permittivity and dc-conductivity, of the bulk and grain boundaries. The results are discussed on the assumption of the brick layer model.  相似文献   

18.
马修臻  胡斌 《化学通报》2018,81(10):939-943,938
本文用高精度数字式振荡管密度计测定了288K至318K温度范围内Li2SO4 + Na2SO4 + H2O和 Li2SO4 + K2SO4 + H2O三元体系的密度。混合溶液的离子强度范围从0.1到4.5 mol.kg–1,混合溶液中Na2SO4和K2SO4的离子强度分数为0.2,0.4,0.6和0.8。用密度实验值拟合得到了不同温度下Pitzer离子相互作用模型混合参数θV和 ψV,模型的计算值与实验值的偏差在±0.002 g.cm3以内。用Pitzer模型计算了不同离子强度下三元体系的混合体积。  相似文献   

19.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

20.
Niobium diffusion in niobium-doped titanium dioxide   总被引:1,自引:0,他引:1  
The present work studied the self-diffusion coefficient of 93Nb in Nb-doped TiO2 single crystal (4.3 at.% Nb) at high oxygen activity [p(O2) = 21 kPa] over the temperature range 1,073 to 1,573 K. The diffusion-induced 93Nb concentration profile was determined by using secondary ion mass spectrometry (SIMS). The subsequently determined self-diffusion coefficient of 93Nb exhibits the following temperature dependence:. This study builds upon a similar study performed previously for 93Nb tracer diffusion in undoped TiO2, and identifies the effect of compositional change on self-diffusion behaviour. The obtained activation energy has been considered in terms of migration and formation enthalpies of titanium vacancies. The present work is dedicated to Professor John Bockris on the occasion of his 85th birthday. His contribution to the progress of modern electrochemistry is well-known to several generations of students and researchers who have been using his textbooks. His specific contribution to the theory of photoelectrochemical water splitting is known to all working in this fascinating area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号