首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The action of a strong high-frequency electromagnetic field on a lateral semiconductor superlattice is considered based on the quasi-classical electron transport theory in the self-consistent wave formulation. The theory predicts that a lateral superlattice can emit terahertz radiation wave trains, which are associated with periodic excitation of Bloch oscillations in the superlattice arising because of the development of transient processes in it in a variable self-consistent electric field. The conditions necessary for observing Bloch oscillator radiation were found. The spectral composition of radiation transmitted through the superlattice and the energy efficiency of frequency multiplication related to Bloch oscillator excitation were calculated.  相似文献   

2.
Intense terahertz electroluminescence from SiC structures with a miniband electron spectrum caused by the natural superlattice has been observed. The shape of the terahertz radiation line, the linear dependence of the position of its maximum on the bias voltage, the typical value of the field required to induce the radiation, and the prevailing polarization of the radiation along the superlattice axis indicate that the observed radiation results from to the excitation of stationary Bloch oscillations of electrons in the natural silicon carbide superlattice.  相似文献   

3.
We report the observation of frequency multiplication of microwave radiation in a GaAs/AlAs semiconductor superlattice at room temperature. We observed, for a fundamental frequency of 9 GHz, second and third harmonic generation. We associate the harmonic generation with a nonlinear current-voltage characteristic that is determined by Bloch oscillations of electrons propagating along the superlattice axis. Our results suggest for the frequency multiplication an upper limit in the tetrahertz frequency range.  相似文献   

4.
While many predicted superlattice behaviors depend on the presence of Bloch oscillations, the existence of such oscillations remains problematical. Here, we consider procedures by which their existence within a superlattice could be detected. We first set upper and lower bounds on the necessary fields. We then demonstrate that while a negative differential mobility is expected, no resonant peak occurs in this mobility at the Bloch frequency. However, we provide two ways of directly observing Bloch oscillations. In the first, we note the existence of structures in the dc velocity-field characteristic when an externally applied RF field has a frequency which is harmonically related to the Bloch frequency. The second approach is to measure the velocity fluctuation noise spectra, which should have a peak at the field-tunable Bloch frequency.  相似文献   

5.
6.
The oscillatory motion of electrons in a periodic potential under a constant applied electric field, known as Bloch oscillations (BO), is one of the most striking and intriguing quantum effects and was predicted more than eighty years ago. Oscillating electrons emit electromagnetic radiation and here we consider this BO effect for emission in the THz region. To date, it has been assumed that the Bloch oscillation of an electron is anharmonic oscillation, therefore with radiation emitted at the single Bloch frequency. We analyze scenarios when Bloch oscillations can be accompanied by the emission of radiation not only at the Bloch frequency but also with double and triple Bloch frequencies. The first scenario means that electrons could jump over neighboring Stark states. The second scenario of anharmonic emission is coupled to an opening of the minigap in the miniband.  相似文献   

7.
A microscopic theory is presented for high-field miniband transport in a two-dimensional superlattice. The energy transfer to the lateral electron motion is taken into account as well as scattering on polar optical phonons. Oscillatory current anomalies appear when the optical phonon frequency is a multiple of the Bloch frequency. The current oscillations, which are due to Wannier–Stark localization, are much more pronounced in a two-dimensional than in a three-dimensional system with a superlattice structure in one direction.  相似文献   

8.
In this paper we report on the observation of response of a Bloch oscillator at room temperature to a THz-field of a frequency larger than the Bloch frequency. The oscillator consisted of a semiconductor superlattice structure, with an applied dc voltage giving rise to a dc electron drift current. Submitting the oscillator to a field at a frequency of 3.3 THz caused a sizeable reduction of the current; the THz-field was generated by use of intense THz-radiation pulses focused on an antenna coupled to the superlattice. We attribute the THz-field induced reduction of the current to a frequency modulation of the Bloch oscillations of electrons at the frequency of the THz-field, leading to reduction of the electron drift velocity and, consequently, of the current.  相似文献   

9.
We present the proposal of a microwave-driven semiconductor superlattice oscillator. We show that the interplay of a microwave pump field with a synchronous harmonic field can make a semiconductor superlattice to a gain medium for the harmonic field. Placing the superlattice in a resonator for the harmonic field allows the operation of an oscillator. The gain mechanism is based on Bloch oscillations of miniband electrons. The gain is mediated either by the interaction of the high-frequency field with the single electrons or with space charge domains or with both. The microwave-driven superlattice oscillator should be suitable for generation of coherent radiation up to several THz.  相似文献   

10.
Bloch oscillations excited in a strain-balanced InxGa1  xAs/InyGa1  yAs superlattice by fs optical pulses at 1.55 μ m are investigated in time-resolved transmission spectroscopy. The transition from the coherent oscillatory motion to an incoherent drift transport of the electrons is observed via a transient frequency shift of the Bloch oscillations due to the associated screening of the applied electric field. These electric field changes are analyzed quantitatively as a function of the initial field strengths and excitation densities. The incoherent transport can be described by a drift-diffusion model. As a result, the carrier mobility in the superlattice is obtained on a picosecond timescale.  相似文献   

11.
A model is proposed for a one-dimensional dielectric or elastic superlattice (SL) that relatively simply describes the frequency spectrum of electromagnetic or acoustic waves. The band frequency spectrum is reduced to minibands contracting with increasing frequency. A procedure is suggested for obtaining local states near a defect in a SL, and the simplest of these states is described. Conditions for the initiation of Bloch oscillations of a wave packet in a SR are discussed.  相似文献   

12.
13.
We report on a microwave oscillator based on Bloch oscillations of electrons in a semiconductor superlattice. Our GaAs/AlAs superlattice, at room temperature, was coupled electromagnetically by an antenna to a rectangular cavity resonator, and was operated at a current-voltage state of negative differential conductance. We observed generation of microwave radiation at frequencies, depending on the resonator length, between 7 and 30 GHz. Electronic tuning by several percent was possible; the ratio of linewidth to frequency was of the order of 10?4. A radiation power up to 1 μW (at 10 GHz) was obtained, corresponding to a generator efficiency of the order of 10?3 for the conversion of electrical power to microwave radiation.  相似文献   

14.
We demonstrate the existence of Bloch oscillations of acoustic fields in sound propagation through a superlattice of water cavities and layers of methyl methacrylate. To obtain the acoustic equivalent of a Wannier-Stark ladder, we employ a set of cavities with different thicknesses. Bloch oscillations are observed as time-resolved oscillations of transmission in a direct analogy to electronic Bloch oscillations in biased semiconductor superlattices. Moreover, for a particular gradient of cavity thicknesses, an overlap of two acoustic minibands occurs, which results in resonant Zener-like transmission enhancement.  相似文献   

15.
A model of a dielectric or an elastic superlattice is proposed which describes quite simply the frequency spectrum of electromagnetic or acoustic waves. The frequency band spectrum of a one-dimensional lattice consists of minibands, which narrow down with increasing frequency (so that the forbidden bands in the spectrum broaden with increasing frequency). An elementary analysis of the spectrum of a one-dimensional lattice reveals the presence of many forbidden frequency bands in this case as well. It is shown that dynamic equations for superlattices can be generalized to the nonlinear case, leading to equations of the type of the nonlinear Schrödinger equation for the lattice. Soliton excitations are described and the particle-like dynamics of solitons is demonstrated. Local vibrations near point defects of different complexity in superlattices are studied and graphically illustrated. The existence of Bloch oscillations of a wave packet in a superlattice in a homogeneous external field is discussed.  相似文献   

16.
We investigate the dephasing dynamics in semiconductor superlattices using time-resolved four-wave mixing. The signals show a periodic modulation which can be related to Bloch oscillations in the superlattice miniband. The oscillation frequency is strongly dependent on the applied field, in agreement with theoretical expectation. At high fields, the dephasing times become very short due to field-induced scattering.  相似文献   

17.
18.
Theoretical formalism for DC‐field polaron dynamics is extended to the dynamics of a 1D Holstein polaron in an external AC electric field using multiple Davydov trial states. Effects of carrier–phonon coupling on detuned and resonant scenarios are investigated for both phase and nonzero phase. For slightly off‐resonant or detuned cases, a beat between the usual Bloch oscillations and an AC driving force results in super Bloch oscillations, that is, rescaled Bloch oscillations in both the spatial and the temporal dimension. Super Bloch oscillations are damped by carrier–phonon coupling. For resonant cases, if the carrier is created on two nearest‐neighboring sites, the carrier wave packet spreads with small‐amplitude oscillations. Adding carrier–phonon coupling localizes the carrier wave packet. If an initial broad Gaussian wave packet is adopted, the centroid of the carrier wave packet moves with a certain velocity and with its shape unchanged. Adding carrier–phonon coupling broadens the carrier wave packet and slows down the carrier movement. Our findings may help provide guiding principles on how to manipulate the dynamics of the super Bloch oscillations of carriers in semiconductor superlattice and optical lattices by modifying DC and AC field strengths, AC phases, and detuning parameters.  相似文献   

19.
We report on a theoretical analysis of terahertz (THz-) field induced nonlinear dynamics of electrons in a semiconductor superlattice that are capable to perform Bloch oscillations. Our results suggest that for a strong THz-field a dc voltage should be generated. We have analyzed the real-time dynamics using a balance equation approach to describe the electron transport in a superlattice miniband. Taking account of both Bloch oscillations of electrons in a superlattice miniband and dissipation, we studied the influence of a strong THz-field on currently available superlattices at room temperature. We found that a THz-field can lead to a negative conductance resulting in turn in a THz-field induced dc voltage, and that the voltage per superlattice period should show, for varying amplitue of the THz-field, a form of wisted plateaus with the middle points being with high precision equal to the photon energy divided by the electron charge. We show voltage to the finite voltage state, and that in the finite voltage state dynamic localization of the electrons in a miniband occurs.  相似文献   

20.
We investigate the energy spectrum and the electron dynamics of a band in a semiconductor superlattice as a function of the electric field. Linear optical spectroscopy shows that, for high fields, the well-known localization of the Bloch states is followed by a field-induced delocalization, associated with Zener breakdown. Using time-resolved measurements, we observe Bloch oscillations in a regime where they are damped by Zener breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号