首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catanionic surfactants formed by the pairing of two ionic amphiphilic chains of opposite charge are now recognized as an important class of amphiphiles. Many aspects of their phase behavior have yet to be explored. In this work, two homologous series of catanionic surfactants were synthesized, based on the cationic headgroups trimethylammonium and pyridinium. Within each series, the headgroup and chain length of the cationic counterpart remains constant while for the anionic counterpart the headgroup is varied, while its alkyl chain length is also kept constant. Thus, one can directly monitor the influence of headgroup chemistry on the thermal behavior of these compounds. Differential scanning calorimetry (DSC) and polarizing light microscopy show that these compounds bear a rich and often complex thermotropic behavior, with the headgroup chemistry in some instances having a rather dramatic influence on phase behavior. Several liquid crystalline phases appear between the solid crystalline phase and the isotropic liquid phase. A qualitative correlation between the observed thermotropic behavior and the chemical nature of headgroup is presented.  相似文献   

2.
Amino acid-derived gemini surfactants arise as a potentially good alternative to the more conventional lipid and synthetic catanionic systems in view of their enhanced interfacial properties, increased chemical stability, and low toxicity. The presence of an amino acid as the polar headgroup allows toxicity reduction, with the simultaneous increase of biodegradability. For these compounds, the establishment of structure/function relationships from the assessment of their basic aggregation properties is therefore of the utmost interest, e.g., in the design of operative self-assembled systems (e.g., liposomes, nanotubes, etc). In this context, the study of the thermal phase behavior of the dry surfactants is a natural, straightforward first step, the more so as thermotropic liquid crystals are also relevant for practical applications. In this work, several lysine-based amphiphiles with a gemini-like configuration have been synthesized, with the amino acid side chain as the spacer group. The molecules are either esters (neutral, with C6-C12 even chains) or sodium carboxylates (anionic, with C6-C12 even chains). Upon increasing the temperature, different crystalline (cr) and liquid-crystalline (lc) phases have been detected and the corresponding thermodynamic and structural parameters determined by a combination of differential scanning calorimetry, polarizing light microscopy and small-angle X-ray scattering. The phase behavior of the amphiphiles is highly dependent on both the chain length and the presence of charge on the headgroup, with significant differences occurring within and between each group of molecules. The C6 and C8 esters form reverse hexagonal cr and lc phases, while C10 and C12 self-assemble into smectic cr and lc structures, with C10 showing also a reverse hexagonal lc phase prior to isotropization. All the carboxylate derivatives form smectic lc phases at high enough temperature prior to isotropization. The rationalization of the phase behavior and phase transition energetics of the compounds has been put forth on the basis of the intermolecular interactions at stake (van der Waals, H-bonding, electrostatic, and packing) and the molecular shape of the amphiphile.  相似文献   

3.
The phase equilibria of surfactant aqueous mixtures, hexadecyltrimethylammonium bromide and sodium dodecyl sulfate, have been studied by polarizing microscopy, quasielastic light scattering, conductivity, potentiometric, electrophoretic, and surface tension measurements. Adsorption at the air/solution interface, association and precipitation in bulk solution strongly depended on the molar ratio and the concentration of surfactants. Catanionic vesicles coexisted with crystalline catanionic salts in a broad concentration range. The relative proportions of crystallites and vesicles varied according to the concentration and the molar ratio of the surfactants. The solid crystalline phase was progressively converted to catanionic vesicles with increasing surfactant molar ratio. At the highest excess of one of the surfactants transition from catanionic vesicles to mixed micelles occurred. The formation and stability of different phases are discussed in terms of surfactant molecular packing constraints and electrostatic interactions in the headgroup region. Surfactant tail-length asymmetry and the change of electrostatic interactions in the headgroup region from attractive to repulsive are governing factors for the transition from planar to curved bilayers. Received: 9 June 1998 Accepted: 18 August 1998  相似文献   

4.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

5.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

6.
Using molecular dynamics simulation, we performed theoretical calculations on the curvature constant and edge energy of bilayers of salt-free, zero-charged, cationic and anionic (catanionic) surfactant vesicles composed of alkylammonium cations (C(m)(+)) and fatty acid anions (C(n)(-)). Both the minimum size and edge energy of vesicles were calculated to examine the relation between the length of the surfactant molecules and the mechanical properties of the catanionic bilayers. Our simulation results clearly demonstrate that, when the chain lengths of the cationic and anionic surfactants are equal, both the edge energy and the rigidity of the catanionic bilayers increase dramatically, changing from around 0.36 to 2.77 kBT·nm(-1) and around 0.86 to 6.51 kBT·nm(-1), respectively. For the smallest catanionic vesicles, the curvature is not uniform and the surfactant molecules adopt a multicurvature arrangement in the vesicle bilayers. We suspect that the multicurvature bending of bilayers of catanionic vesicles is a common phenomenon in rigid bilayer systems, which could aid understanding of ion transport through bilayer membranes.  相似文献   

7.
The cytotoxicity of commonly used synthetic surfactants and catanionic mixtures of those was evaluated using MTT on HeLa cells. The 50% inhibition concentration (IC50) for MTT reduction was calculated. The effect on chain length increase and inclusion of polyoxyethylene groups on the toxicity was tested on single surfactant systems. A general trend of increasing toxicity with increasing chain length and the presence of polyoxyethylene groups was observed. The measured IC50 values of catanionic systems lie between those of participating surfactants. The increase in toxicity as the cationic surfactant is added to the anionic one is however not linear. A steep decrease of the IC50 values (and therefore increase in the toxic properties) is observed immediately already at low concentrations of the cationic surfactants. This behavior is analogous to the enzyme activity in catanionic microemulsions.  相似文献   

8.
We review and summarize the three-phase behavior and solubilization of microemulsions with catanionic surfactants. Particular emphasis is placed to the three-phase behavior of mixtures of oil, water and alcohol with mixed surfactants containing one anionic and one cationic surfactant. The effect of salt and catanionic surfactant on the HLB composition and solubilizing capacity of surfactants to form microemulsions is discussed.  相似文献   

9.
Mesostructured calcium phosphates constructed by ionic frameworks were synthesized using carboxylic acid- and amine-type surfactants in mixed solvent systems of ethanol and water. A lamellar mesostructured calcium phosphate was prepared using palmitic acid as an anionic surfactant, as in the case using n-alkylamines. A wormhole-like mesostructured calcium phosphate can be obtained using dicarboxyl N-lauroyl- l-glutamic acid, whose headgroup is larger than that of palmitic acid. Similar mesostructured product was obtained using 4-dodecyldiethylenetriamine with a large headgroup containing two primary amine groups. Interactions of carboxyl and primary amino groups in the surfactant molecules with inorganic species are quite important for the formation of mesostructured calcium phosphates. The Ca/P molar ratio of mesostructured calcium phosphates was strongly affected by the molecular structure of surfactants containing carboxyl and primary amino groups. Ca-rich materials can be obtained using carboxylic acid-type surfactants (Ca/P approximately 1.7) rather than amine-type surfactants (Ca/P approximately 1.0).  相似文献   

10.
The structure of a zwitterionic phosphocholine (PC) surfactant monolayer adsorbed on the surface of water has been determined using neutron reflectivity in combination with H/D isotopic substitution. The most significant results of this study are the level of hydration of the PC headgroup and the lack of dehydration with increasing temperature and salt addition. The fraction of the alkyl chain (f(c)) immersed in water for all three chain isomers studied was found to be around 0.15, suggesting that the PC headgroup geometries influenced not only the headgroup hydration but also the degree of immersion of the alkyl chain in water. At the critical micelle concentration (CMC), the number of water molecules associated with the PC headgroup in C(m)PC (m = 12, 14, 16) was on order of 15. This value was significantly greater than that obtained for nonionic and ionic surfactants with similar limiting area per molecule at the CMC (A(cmc)). However, the fraction of the chain immersed in water for the ionic and nonionic surfactants was much greater. This suggests that the unique surface biocompatibility of PC surfactants arises from their strong affinity for water, and the relatively low fraction of mixing with the alkyl chain arises from the higher structural order within the PC monolayer. As surface coverage decreased, the number of water molecules associated with each PC headgroup increased, but f(c) remained constant for all the surfactants. This observation was consistent with the small variation in the thickness of the headgroup region, and the entire layer changed little with surfactant concentration. This is attributed to the role of PC headgroup geometries to maintain the conformational order within the layer as packing density varies. Further structural analysis based on a kinematic approach showed that, as the chain length was increased from C12 to C14 to C16 at the CMC, the angle of tilt for the alkyl chain increased from 40 degrees to 48 degrees to 53 degrees , respectively, whereas the thickness of the whole layer and that of the PC head region was largely constant. The almost vertical projection of the PC headgroup from these single alkyl chain surfactants is in sharp contrast to its strongly tilted conformation, as reported for dichain phospholipids such as dipalmitoyl glycerol phosphocholine (DPPC).  相似文献   

11.
Aggregation properties of biodegradable ammonium surfactants containing amide and ester groups in the bulk and at the air-water interface were investigated as a function of surfactant tail length m using dynamic light scattering and surface tension experimental methods. The results indicate that surfactants containing an ester group in the structure display higher aggregation ability in the volume and form more densely packed layer of molecules at the air-water interface than those with an amide group. The results of physical measurements were correlated with 3D models of respective surfactant molecules. As the results indicate, a surfactant molecule headgroup containing an ester group shows higher flexibility than that with an amide group in its structure, which is documented by somewhat smaller headgroup size and denser packing at the air-water interface.  相似文献   

12.
Recent investigations of the DNA interactions with cationic surfactants and catanionic mixtures are reviewed. Several techniques have been used such as fluorescence microscopy, dynamic light scattering, electron microscopy, and Monte Carlo simulations.

The conformational behaviour of large DNA molecules in the presence of cationic surfactant was followed by fluorescence microscopy and also by dynamic light scattering. These techniques were in good agreement and it was possible to observe a discrete transition from extended coils to collapsed globules and their coexistence for intermediate amphiphile concentrations. The dependence on the surfactant alkyl chain was also monitored by fluorescence microscopy and, as expected, lower concentrations of the more hydrophobic surfactant were required to induce DNA compaction, although an excess of positive charges was still required.

Monte Carlo simulations on the compaction of a medium size polyanion with shorter polycations were performed. The polyanion chain suffers a sudden collapse as a function of the concentration of condensing agent, and of the number of charges on the polycation molecules. Further increase in the concentration increases the degree of compaction. The compaction was found to be associated with the polycations promoting bridging between different sites of the polyanion. When the total charge of the polycations was lower than that of the polyanion, a significant translational motion of the compacting agent along the polyanion was observed, producing only a small-degree of intrachain segregation, which can explain the excess of positive charges necessary to compact DNA.

Dissociation of the DNA–cationic surfactant complexes and a concomitant release of DNA was achieved by addition of anionic surfactants. The unfolding of DNA molecules, previously compacted with cationic surfactant, was shown to be strongly dependent on the anionic surfactant chain length; lower amounts of a longer chain surfactant were needed to release DNA into solution. On the other hand, no dependence on the hydrophobicity of the compacting agent was observed. The structures of the aggregates formed by the two surfactants, after the interaction with DNA, were imaged by cryogenic transmission electron microscopy. It is possible to predict the structure of the aggregates formed by the surfactants, like vesicles, from the phase behaviour of the mixed surfactant systems.

Studies on the interactions between DNA and catanionic mixtures were also performed. It was observed that DNA does not interact with negatively charged vesicles, even though they carry positive amphiphiles; however, in the presence of positively charged vesicles, DNA molecules compact and adsorb on their surface.

Finally Monte Carlo simulations were performed on the adsorption of a polyelectrolyte on catanionic surfaces. It was observed that the mobile charges in the surface react to the presence of the polyelectrolyte enabling a strong degree of adsorption even though the membrane was globally neutral. Our observations indicate that the adsorption behaviour of the polyelectrolyte is influenced by the response given by the membrane to its presence and that the number of adsorbed beads increases drastically with the increase of flexibility of the polymer. Calculations involving polymers with three different intrinsic stiffnesses showed that the variation is non-monotonic. It was observed also that a smaller polyanion typically adsorbs more completely than the larger one, which indicates that the polarisation of the membrane becomes less facilitated as the degree of disruption increases.  相似文献   


13.
The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C12/C12, and the other highly asymmetric with 2C8/C16 chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C8/C16 system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy).  相似文献   

14.
The interaction behavior of DNA with different types of hydroxylated cationic surfactants has been studied. Attention was directed to how the introduction of hydroxyl substituents at the headgroup of the cationic surfactants affects the compaction of DNA. The DNA-cationic surfactant interaction was investigated at different charge ratios by several methods like UV melting, ethidium bromide exclusion, and gel electrophoresis. Studies show that there is a discrete transition in the DNA chain from extended coils (free chain) to a compact form and that this transition does not depend substantially on the architecture of the headgroup. However, the accessibility of DNA to ethidium bromide is preserved to a significantly larger extent for the more hydrophilic surfactants. This was discussed in terms of surfactant packing. Observations are interpreted to reflect that the surfactants with more substituents have a larger headgroup and therefore form smaller micellar aggregates; these higher curvature aggregates lead to a less efficient, "patch-like" coverage of DNA. The more hydrophilic surfactants also presented a significantly lower cytotoxicity, which is important for biotechnological applications.  相似文献   

15.
We report in situ spectroscopic measurements monitoring the adsorption of a series of carboxylate surfactants onto the surface of the semisoluble, ionic solid fluorite (CaF2). We employ the surface-specific technique, vibrational sum-frequency spectroscopy (VSFS), to examine the effect that surfactant adsorption has on the bonding interactions and orientation of interfacial water molecules through the alteration of the electric properties in the interfacial region. In addition, we report on the chain length and headgroup dependence of the formation of hydrophobic self-assembled monolayers on the surface of the solid phase. Differences in chain length and headgroup functionality lead to large changes in the adsorption behavior and structuring of the monolayers formed and the interactions of interfacial water molecules with these monolayers. Fundamental studies such as these are essential for understanding the mechanisms involved in the surfactant adsorption process, information that is important for industrially relevant processes such as mineral ore flotation, waste processing, and petroleum recovery.  相似文献   

16.
The vesicle-to-micelle transition (VMT) was realized in catanionic surfactant systems by the addition of two kinds of bile salts, sodium cholate (SC) and sodium deoxycholate (SDC). It was found that steric interaction between the bile salt and catanionic surfactant plays an important role in catanionic surfactant systems that are usually thought to be dominated by electrostatic interaction. The facial amphiphilic structure and large occupied area of the bile salt are crucial to the enlargement of the average surfactant headgroup area and result in the VMT. Moreover, bile salts can also induce a macroscopic phase transition. Freeze-fracture transmission electron microscopy, dynamic light scattering, isothermal titration calorimetry, and absorbance measurements were used to follow the VMT process.  相似文献   

17.
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.  相似文献   

18.
We extend our previous molecular dynamics experiments [Rodriguez et al., J. Phys. Chem. B 109, 24427 (2005)] to the analysis of the adsorption of catanionic surfactants at water/air interfaces, at a surfactant coverage close to that of the saturated monolayer: 30.3 A(2) per headgroup. The mixture of surfactants investigated corresponds to equal amounts of dodecytrimethylammonium (DTA) and dodecylsulfate (DS). The structure of the interface is analyzed in terms of the local densities and orientational correlations of all relevant interfacial species. In accordance with experimental evidence, the DTA headgroups penetrate deeper into the aqueous substrate than the DS ones, although the average positions of all headgroups, with respect to the interface, lie in positions somewhat more external than the ones observed at lower coverages. Average tail tilts are close to 45 degrees. The characteristics of the headgroup-water substrate correlations are also analyzed using a tessellation procedure of the interface. The density and polarization responses of the interfacial domains closest to the DS headgroups are enhanced, compared to those adjacent to the DTA detergents. Dynamical aspects related to the diffusion and to the orientational correlations of different water layers in close contact with the surfactant are also investigated.  相似文献   

19.
A systematic study on the water-intake capacity of the microemulsion formed using a catanionic surfactant (synthesized by taking equimolar mixture of acid and amine) with varying hydrocarbon chain length of the acid has been carried out. A decrease in the water-intake capacity with increase in the chain length was observed. Shorter chain length of co-surfactant (1-butanol compared to 1-octanol) led to higher water-intake capacity of microemulsions which may also be attributed to the high hydrophilic-lipophilic balance (HLB) of 1-butanol. Three new microemulsions based on catanionic surfactants have been used to synthesize quantum dots of CdS. The size of CdS quantum dots decreased with increase in chain length of the acid component of the catanionic surfactant.  相似文献   

20.
The dynamics of the carbons comprising the micelles of two members of the family of two-headed surfactants, the disodium 4-alkyl-3-sulfonatosuccinates, has been determined via the application of the two-step model to the 13C relaxation rates and the nuclear Overhauser enhancements (nOe's) at 200 MHz. The NMR relaxation times, determined from the inversion recovery method, increase steadily as we descend the chain from the headgroup region. The relaxation rate profiles and the order parameters have been calculated from the two-step model for the micellar sulfosuccinate aggregates. We note that the order parameter profile and the fast motion correlation time profile for these two-headed surfactants are distinctly different from those of a typical single-headed, single-tailed surfactant such as dodecyltrimethylammonium bromide, particularly in the headgroup region of the micelle. All these results are interpreted in terms of the effect of adding a second headgroup to a single-headed, single-tailed surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号