首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
FT-IR and (1)H, (13)C, DEPT, HETCOR, COSY, and NOESY NMR spectra of 2-(1-cyclohexenyl)ethylamine (CyHEA) have been reported for the first time. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of CyHEA (C(8)H(15)N) have been calculated by means of the Hartree-Fock (HF), Becke-Lee-Yang-Parr (BLYP) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31 G(d) and 6-31 G(d,p) basis sets, respectively. The comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for vibrational frequencies and predicting NMR properties.  相似文献   

3.
4.
FT-IR and (1)H, (13)C, DEPT, COSY, NOESY, HETCOR, INADEQUATE NMR spectra of 1-phenylpiperazine (pp) have been reported for the first time except for its (1)H NMR spectrum. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of pp (C(10)H(14)N(2)) have been calculated by means of the Hartree-Fock (HF) and Becke-Lee-Yang-Parr (BLYP) or Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-31G(d,p) basis sets, respectively. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for predicting vibrational frequencies and NMR properties.  相似文献   

5.
A series of complexes formed between halogen-bonded H(3)N∕HCN[ellipsis (horizontal)]BrZ (Z = Br, F) dimers and H(3)N∕HCN[ellipsis (horizontal)]BrZ[ellipsis (horizontal)]XY (XY = HF, ClF, BeH(2), LiF) trimers were investigated at the MP2 and B3LYP levels of theory using a 6-31++G(d,p) basis set. Optimized structures, interaction energies, and other properties of interest were obtained. The addition of XY to the H(3)N∕HCN[ellipsis (horizontal)]BrZ dyad leads to enhanced intermolecular binding with respect to the isolated monomers. This enhanced binding receives contributions from the electrostatic and inductive forces between the constituent pairs, with, in some instances, substantial three-body non-additive contributions to the binding energy. It was found that the XY = LiF interaction causes the greatest distortion of the H(3)N∕HCN[ellipsis (horizontal)]BrZ halogen bond from the preferred linear orientation and also provides the strongest binding energy via the nonadditive energy.  相似文献   

6.
The molecular geometry and vibrational frequencies of 2-amino-5-phenyl-1,3,4-thiadiazole (C8H7N3S) in the ground state has been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 2-amino-5-phenyl-1,3,4-thiadiazole (C8H7N3S) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   

7.
The geometries, harmonic vibrational frequencies, and energies of eight hydrogen-bonded complexes of guanine with one molecule methanol are computed using the DFT (B3LYP) method together with the 6-31+G* basis functions. In the investigation two stable tautomers of guanine (oxo-amino N9H and oxo-amino N7H) were chosen. They were included in a variety of H-bonded complexes with one molecule methanol. In order to investigate the nature of the intermolecular bonds, the bonding energies and thermodynamic properties of the complexes were calculated.  相似文献   

8.
Summary. The geometries, harmonic vibrational frequencies, and energies of eight hydrogen-bonded complexes of guanine with one molecule methanol are computed using the DFT (B3LYP) method together with the 6-31+G* basis functions. In the investigation two stable tautomers of guanine (oxo-amino N9H and oxo-amino N7H) were chosen. They were included in a variety of H-bonded complexes with one molecule methanol. In order to investigate the nature of the intermolecular bonds, the bonding energies and thermodynamic properties of the complexes were calculated.  相似文献   

9.
A theoretical analysis of the silver-induced ring expansion of N-chloro-N-methyl-1-hydroxycyclopropylamine to form N-methyl-2-azetidinone, and of the Cl(-) elimination from this substrate without Ag(+) assistance, was performed using the B3LYP method and the 6-31+G(d) basis set for C, N, O, H, and Cl atoms and the relativistic effective core pseudopotential LANL2DZ complemented with one set of f polarization functions (zeta(f) = 0.473) for the Ag atom. The partial Ag(+)-assisted extrusion of Cl(-) at the rate-determining transition state provokes an important change in the nodal properties of the frontier molecular orbitals of the H(3)CClNCOHAg(+) fragment, thus making very stabilizing HOMO-LUMO interactions between this fragment and the C(2)H(4) moiety possible. This interaction leads to the ring opening and release of most of the strain energy, giving rise to a low energy barrier for the process. Also, by assisting the Cl(-) extrusion, Ag(+) avoids the elimination of the hydroxyl hydrogen atom, which would provoke the fragmentation of the system instead of the formation of the beta-lactam.  相似文献   

10.
Structural isomers of isolated protonated phenol (C(6)H(7)O(+)) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N(2)). IR spectra of C(6)H(7)O(+)-L recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C(6)H(7)O(+) isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C(6)H(7)O(+)) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C(6)H(7)O(+)). In contrast, protonation at the meta and ipso positions is not observed. The most stable C(6)H(7)O(+)-L dimer structures feature intermolecular H-bonds between L and the OH groups of O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). Extrapolation to zero solvation interaction yields reliable experimental vibrational frequencies of bare O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). The interpretation of the C(6)H(7)O(+)-L spectra, as well as the extrapolated monomer frequencies, is supported by B3LYP and MP2 calculations using the 6-311G(2df,2pd) basis. The spectroscopic and theoretical results elucidate the effect of protonation on the structural properties of phenol and provide a sensitive probe of the activating and ortho/para directing nature of the OH group observed in electrophilic aromatic substitution reactions.  相似文献   

11.
The molecular geometry and vibrational frequencies of N-phenyl-N'-(2-thienylmethylene)hydrazine (C11H10N2S) have been calculated using Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and angles obtained using HF and DFT (B3LYP) are in agreement with the experimental data. B3LYP method seems to be appropriate than HF method for the calculation of vibrational frequencies and geometrical parameters of the (C11H10N2S) compound.  相似文献   

12.
Parts of the potential energy surface of the title process and related processes have been investigated at the SCF /6-31G **, SCF /6-31++G **, and MP 2/6-31++G ** levels. The investigated reaction is exothermic (?6.23 kcal/mol, MP 4/6-31++G **//MP 2/6–31++G** level, ZPE included): A linear intermediate radical anion, Li? H? Li? H??, is significantly stabilized with respect to LiH + LiH?? (?38.74 kcal/mol, the same level as above). The BSSE at MP 2/6–31++G **//MP 2/6–31++G ** amounts to 1.8 kcal/mol. The title process seems to be suitable for experimental study in molecular beams.  相似文献   

13.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

14.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of benzimidazole. The laser Raman and Fourier transform infrared spectra of benzimidazole were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP method with the 6-311G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311G(d,p) and B3LYP/6-31G(d,p)/6-311G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of benzimidazole is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

15.
State-resolved cross beam experiments [H. Udseth et al., J. Chem. Phys. 60, 3051 (1974); J. Krutein and F. Linder, J. Chem. Phys. 71, 599 (1979); G. Niedner-Schatteburg and J. P. Toennies, Adv. Chem. Phys. LXXXII, 553 (1992)], coupled with proton energy loss spectroscopy for the inelastic scattering of H(+) from CO in the collision range of 10-30 eV show very low vibrational excitation of the target molecule. Stimulated by the experimentally observed low vibrational inelasticity in the system the ground and the first two low-lying excited electronic potential-energy surfaces have been computed using the ab initio multireference configuration interaction method. Quantum dynamics has been performed on the ground potential energy surface in the framework of vibrational close-coupling rotational infinite-order sudden approximation. The various computed dynamical attributes such as differential and integral cross sections, and average vibrational energy transfer are analyzed in detail, and compared successfully with the available experimental results.  相似文献   

16.
The molecular structure and vibrational spectra of 3-acetyl-4-[N-(2'-aminopyridinyl)-3-amino]-3-buten-2-one (C(11)H(13)N(3)O(2)) in the ground state have been investigated by Hartree-Fock and density functional method (B3LYP and BLYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems.  相似文献   

17.
A quantum mechanical investigation of the vibrational and rotational deactivation of NO(+) in collisions with He atoms in the cold and ultracold regime is presented. Ab initio potential energy calculations are carried out at BCCD(T) level and a new global 3D potential energy surface (PES) is obtained by fitting ab initio points within the reproducing kernel Hilbert space method. As a first test of this PES the bound state energies of the (3)He-NO(+) and (4)He-NO(+) complexes are calculated and compared to previous rigid rotor calculations. The efficiency of the vibrational and the rotational cooling of this molecular ion using a buffer gas of helium is then investigated by performing close coupling scattering calculations for collision energy ranging from 10(-6) to 2000 cm(-1). The calculations are performed for the two isotopes (3)He and (4)He and the results are compared to the available experimental data.  相似文献   

18.
FT-IR and Raman spectra of 5-o-tolyl-2-pentene (OTP) have been experimentally reported in the region of 4000-10 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of cis and trans isomers of OTP (C12H16) have been theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31G(d) and 6-31++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated. Comparison between the experimental and theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting vibrational wavenumbers and trans isomer is supposed to be the most stable form of OTP molecule.  相似文献   

19.
The FT-Raman and FT-infrared spectra of (1-methyluracilato)silver, [Ag(C(5)H(5)N(2)O(2))] in the solid state have been studied. The complex is a polymer in which one silver ion is linearly bonded to two 1-MeU ligands through the deprotonated N(3) sites and another silver ion is tetrahedrally coordinated to the four 1-MeU ligands through the O2 and O4 carbonyl oxygen atoms. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the N(3)-deprotonated 1-methyluracilate anion have been calculated using density functional (B3LYP) and ab initio (HF and MP2) methods with the 6-31G(d,p) and 6-31++G(df,pd) basis sets. The calculated potential energy distribution (PED) for the 1-MeU anion has proved to be of great help in assigning the spectra of the title complex. It can be concluded that the two strong Raman bands at 1263 and 796 cm(-1) are diagnostic for the N3-deprotonation of the 1-methyluracilate ring and complexation with silver ion. The linear N-Ag-N stretching vibrations are assigned to the bands at 448 and 362 cm(-1) (IR) and 453, 362 cm(-1) (Raman). The Ag-O stretching vibrations are assigned to the bands in the range of 280-250 cm(-1).  相似文献   

20.
Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for (1)O(2) + C(2)H(4), the singlet [middle dot]O-O-CH(2)-CH(2)[middle dot] biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche [middle dot]O-CH(2)-CH(2)-O[middle dot] biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP∕6-31G? method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP∕6-31G? direct dynamics trajectories were initiated at the TS connecting the [middle dot]O-O-CH(2)-CH(2)[middle dot] biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed (1)O(2) + C(2)H(4) and of these ~ 40% went directly from the TS to (1)O(2) + C(2)H(4) without getting trapped and forming an intermediate in the [middle dot]O-O-CH(2)-CH(2)[middle dot] biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice-Ramsperger-Kassel-Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche [middle dot]O-CH(2)-CH(2)-O[middle dot] biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号