首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantum Monte Carlo calculations of the first-row atoms Li-Ne and their singly positively charged ions are reported. Multideterminant-Jastrow-backflow trial wave functions are used which recover more than 98% of the correlation energy at the variational Monte Carlo level and more than 99% of the correlation energy at the diffusion Monte Carlo level for both the atoms and ions. We obtain the first ionization potentials to chemical accuracy. We also report scalar relativistic corrections to the energies, mass-polarization terms, and one- and two-electron expectation values.  相似文献   

2.
A Monte Carlo model is utilized for studying the behavior of electrons in the afterglow of an analytical microsecond dc pulsed glow discharge. This model uses several quantities as input data, such as electric field and potential, ion flux at the cathode, the fast argon ion and atom impact ionization rates, slow electron density, the electrical characterization of the pulse (voltage and current profiles) and temperature profile. These quantities were obtained by earlier Monte Carlo — fluid calculations for a pulsed discharge. Our goal is to study the behavior of the so-called Monte Carlo electrons (i.e., those electrons created at the cathode or by ionization collisions in the plasma which are followed by using the Monte Carlo model) from their origin to the moment when they are absorbed at the cell walls or when they have lost their energy by collisions (being transferred to the group of slow electrons) in the afterglow of the pulsed discharge. The thermalization of the electrons is a phenomenon where the electron-electron Coulomb collisions acquire a special importance. Indeed, in the afterglow the cross sections of the other electron reactions taken into account in the model are very low, because of the very low electron energy. We study the electron energy distributions at several times during and after the pulse and at several positions in the plasma cell, focusing on the thermalization and on the behavior of the electrons in the afterglow. Also, the time evolution of the rates of the various collision processes, the average electron energy, the densities of Monte Carlo and slow electrons and the ionization degree are investigated.  相似文献   

3.
Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states.  相似文献   

4.
The styrene-water binary clusters SW(n), with n = 1-5 have been studied by the (one-color) resonant two-photon ionization technique using the resonance of styrene. The structures and energetics of the neutral clusters are investigated using a search technique that employs Monte Carlo procedure. The strong tendency for water molecules to form cyclic hydrogen-bonded structures is clearly observed in the SW(n) structures starting from n =3. The results indicate that the spectral shifts correlate with the interaction energies between styrene and the water subcluster (W(n)) within the SW(n) clusters. Evidence is presented that points to (1) the formation of a covalent bonded styrene radical cation dimer following the 193 nm MPI of styrene neutral clusters, (2) proton transfer from the styrene dimer cation to the water or methanol subcluster, resulting in the formation of protonated water or methanol clusters and a styrene dimer radical, and (3) extensive solvation of the styrene dimer radical within the protonated solvent molecules. The proton-transfer reactions may explain the strong inhibition effects exerted by small concentrations of water or methanol on the cationic polymerization of styrene. These results provide a molecular level view of the inhibition mechanism exerted by protic solvents on the cationic polymerization of styrene.  相似文献   

5.
The role of cation clusters in the bulk electron-ion recombination in dense gaseous and liquid argon is investigated. The size and structure of cation clusters in those systems are determined by a Monte Carlo simulation. Then, the rate constants of electron-ion recombination are calculated by another simulation method that takes into account the presence of cation clusters in the considered systems. A good agreement with experiment for both dense gaseous and liquid argon is obtained.  相似文献   

6.
We report finite temperature quantum mechanical simulations of structural and dynamical properties of Ar(N)-CO(2) clusters using a path integral Monte Carlo algorithm. The simulations are based on a newly developed analytical Ar-CO(2) interaction potential obtained by fitting ab initio results to an anisotropic two-dimensional Morse∕Long-range function. The calculated distributions of argon atoms around the CO(2) molecule in Ar(N)-CO(2) clusters with different sizes are consistent to the previous studies of the configurations of the clusters. A first-order perturbation theory is used to quantitatively predict the CO(2) vibrational frequency shift in different clusters. The first-solvation shell is completed at N = 17. Interestingly, our simulations for larger Ar(N)-CO(2) clusters showed several different structures of the argon shell around the doped CO(2) molecule. The observed two distinct peaks (2338.8 and 2344.5 cm(-1)) in the υ(3) band of CO(2) may be due to the different arrangements of argon atoms around the dopant molecule.  相似文献   

7.
We report all-electron and pseudopotential calculations of the ground-state energies of the neutral Ne atom and the Ne(+) ion using the variational and diffusion quantum Monte Carlo (DMC) methods. We investigate different levels of Slater-Jastrow trial wave function: (i) using Hartree-Fock orbitals, (ii) using orbitals optimized within a Monte Carlo procedure in the presence of a Jastrow factor, and (iii) including backflow correlations in the wave function. Small reductions in the total energy are obtained by optimizing the orbitals, while more significant reductions are obtained by incorporating backflow correlations. We study the finite-time-step and fixed-node biases in the DMC energy and show that there is a strong tendency for these errors to cancel when the first ionization potential (IP) is calculated. DMC gives highly accurate values for the IP of Ne at all the levels of trial wave function that we have considered.  相似文献   

8.
We have performed Monte Carlo simulations of homogeneous and heterogeneous nucleations of Lennard-Jones argon clusters. The simulation results were interpreted using the major concept posing a difference between the homogeneous and heterogeneous classical nucleation theories-the contact parameter. Our results show that the multiplication concept of the classical heterogeneous nucleation theory describes the cluster-substrate interaction surprisingly well even for small molecular clusters. However, in the case of argon nucleating on a rigid monolayer of fcc(111) substrate at T=60 K, the argon-substrate atom interaction being approximately one-third as strong as the argon-argon interaction, the use of the classical theory concept results in an underestimation of the heterogeneous nucleation rate by two to three orders of magnitude even for large clusters. The main contribution to this discrepancy is induced by the failure of the classical theory of homogeneous nucleation to predict the energy involved in bringing one molecule from the vapor to the cluster for clusters containing less than approximately 15 molecules.  相似文献   

9.
10.
《Chemical physics letters》1987,140(4):406-410
The classical and quantum-mechanical free energies of crystalline (fcc) argon were determined at two state points by classical and path integral Monte Carlo methods. The quantum corrections to the free energy, energy and pressure so obtained are compared with corrections based on the harmonic approximation and the first-order term in the Wigner-Kirkwood expansion.  相似文献   

11.
We use the path integral ground state method to study the energetic and structural properties of small para-H2 clusters of sizes ranging from 2 to 20 molecules. A fourth order formula is used to approximate the short imaginary-time propagator and two interaction potentials are considered. Our results are compared to those of exact basis set calculations and other quantum Monte Carlo methods when available. We find that for all cluster sizes considered, our results show a lower ground state energy than literature values obtained by diffusion Monte Carlo and variational Monte Carlo. For the dimer and trimer, ground state energies are in good agreement with exact results obtained using the discrete variable representation. Structural properties are found to be insensitive to the choice of interaction potential. We explore the use of Pekeris coordinates to analyze the importance of linear arrangement in trimers and for trimers within clusters of larger size.  相似文献   

12.
We have determined the ground-state energies of para-H(2) clusters at zero temperature using the diffusion Monte Carlo method. The liquid or solid character of each cluster is investigated by restricting the phase through the use of proper importance sampling. Our results show inhomogeneous crystallization of clusters, with alternating behavior between liquid and solid phases up to N = 55. From there on, all clusters are solid. The ground-state energies in the range N = 13-75 are established, and the stable phase of each cluster is determined. In spite of the small differences observed between the energy of liquid and solid clusters, the corresponding density profiles are significantly different, a feature that can help to solve ambiguities in the determination of the specific phase of H(2) clusters.  相似文献   

13.
The molecular structures of low-lying isomers of anionic and neutral sodium auride clusters have been studied computationally at the second-order M?ller-Plesset perturbation theory level using quadruple-ζ basis sets augmented with a double set of polarization functions. The first vertical detachment energies were calculated at the M?ller-Plesset level as the energy difference between the cluster anion and the corresponding neutral cluster. The photodetachment energies of higher-lying ionization channels were calculated by adding electronic excitation energies of the neutral clusters to the first vertical detachment energy. The excitation energies were calculated at the linear response approximate coupled-cluster singles and doubles level using the anionic cluster structures. The obtained ionization energies for NaAu(-), NaAu(2)(-), NaAu(3)(-), NaAu(4)(-), Na(2)Au(2)(-), Na(2)Au(3)(-), Na(3)Au(3)(-), and Na(2)Au(4)(-) were compared to values deduced from experimental photoelectron spectra. Comparison of the calculated photoelectron spectra for a few energetically low-lying isomers shows that the energetically lowest cluster structures obtained in the calculations do not always correspond to the clusters produced experimentally. Spin-component-scaled second-order M?ller-Plesset perturbation theory calculations shift the order of the isomers such that the observed clusters more often correspond to the energetically lowest structure, whereas the spin-component-scaled approach does not improve the photodetachment energies of the sodium aurides. The potential energy surface of the sodium aurides is very soft, with several low-lying isomers requiring an accurate electron correlation treatment. The calculations show that merely the energetic criterion is not a reliable means to identify the structures of the observed sodium auride clusters; other experimental information is needed to ensure a correct assignment of the cluster structures. The cluster structures of nonstoichiometric anionic sodium aurides have been determined by comparing calculated ionization energies for low-lying structures of the anionic clusters with experimental data.  相似文献   

14.
Electronic properties of water clusters (H2O)(n), with n=2, 4, 8, 10, 15, 20, and 30 molecules were investigated by sequential Monte Carlo/density-functional theory (DFT) calculations. DFT calculations were carried out over uncorrelated configurations generated by Monte Carlo simulations of liquid water with a reparametrized exchange-correlation functional that reproduces the experimental information on the electronic properties (first ionization energy and highest occupied molecular orbital-lowest unoccupied molecular orbital gap) of the water dimer. The dependence of electronic properties on the cluster size (n) shows that the density of states (DOS) of small water clusters (n>10) exhibits the same basic features that are typical of larger aggregates, such as the mixing of the 3a1 and 1b1 valence bands. When long-ranged polarization effects are taken into account by the introduction of embedding charges, the DOS associated with 3a1 orbitals is significantly enhanced. In agreement with valence-band photoelectron spectra of liquid water, the 1b1, 3a1, and 1b2 electron binding energies in water aggregates are redshifted by approximately 1 eV relative to the isolated molecule. By extrapolating the results for larger clusters the threshold energy for photoelectron emission is 9.6+/-0.15 eV (free clusters) and 10.58+/-0.10 eV (embedded clusters). Our results for the electron affinity (V0=-0.17+/-0.05 eV) and adiabatic band gap (E(G,Ad)=6.83+/-0.05 eV) of liquid water are in excellent agreement with recent information from theoretical and experimental works.  相似文献   

15.
The electronic structure and stability in binary and ternary aluminum‐bismuth‐nitrogen nanoclusters up to six atoms are studied using density functional theory (DFT). The lowest energy geometries were obtained by sampling the geometrical space with a Monte Carlo method and geometry optimizations, at DFT level, with M06L functional. The clusters stability is analyzed using formation and fragmentation energies. Our results show that a high concentration of nitrogen presents a tendency to form nitrogen clusters. highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps show the well‐known oscillation as the number of atoms is increased. Bonding between Al, Bi, and N has mainly a π character. Bismuth and aluminum atoms tend to promote high multiplicity states in small clusters. These new binary and ternary materials provide a potential new field in optoelectronics and high energetic material compounds. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
A hybrid Monte Carlo–fluid model has been developed for the electrons, argon ions and fast argon atoms in an argon glow discharge, either operated in the dc mode or the capacitively coupled rf mode. Typical working conditions for rf GD-OES are considered, i.e. approximately 6 torr argon gas pressure and approximately 10 W power. Typical results of the model, like the potential distributions, densities, fluxes and ionization rates, will be presented and compared between the two operation modes. It will be demonstrated that the rf discharge yields more efficient ionization than the dc discharge, and hence the rf discharge requires lower voltages to obtain the same amount of power, which is in good correspondence to experimental observations.  相似文献   

17.
Single photon ionization of argon and krypton clusters has been studied in the region between threshold and the ionization potential of the corresponding atom. Synchrotron radiation from the electron storage ring BESSY is used to ionize the clusters; threshold-photo-electron-photoion-coincidence (TPEPICO)-time-of-flight technique is used to detect ions correlated with the emission of zero-kinetic-energy-electrons. The spectra of the clusters in the range ofn=2 to 15 are discussed in view of the extensive fragmentation taking place in these systems. In order to characterize the properties of the clusters a method using scaling laws is applied. The principles and the deduction of Hagena's scaling parameter Γ* are briefly reviewed. Using Γ* an experimentally derived mean cluster size for molecular beams can be assigned. This allows one to clearly demonstrate the systematic variations of the measured spectra due to cluster fragmentation. As a general feature it is observed that, in the range studied, the peak in the measured ionization rate for a cluster ion (fragment) of a given size shifts to higher photon energies as the mean cluster size is increased.  相似文献   

18.
Pickup of several molecules, H(2)O, HBr, and CH(3)OH, and Ar atoms on free Ar(N) clusters has been investigated in a molecular beam experiment. The pickup cross sections of the clusters with known mean sizes, ?≈ 150 and 260 were measured by two independent methods: (i) the cluster beam velocity decrease due to the momentum transfer of the picked up molecules to the clusters, and (ii) Poisson distribution of a selected cluster fragment ion as a function of the pickup pressure. In addition, the pickup cross sections were calculated using molecular dynamics and Monte Carlo simulations. The simulations support the results of the velocity measurements. On the other hand, the Poisson distributions yield significantly smaller cross sections, inconsistent with the known Ar(N) cluster sizes. These results are discussed in terms of: (i) an incomplete coagulation of guest molecules on the argon clusters when two or more molecules are picked up; and (ii) the fragmentation pattern of the embedded molecules and their clusters upon ionization on the Ar cluster. We conclude that the Poisson distribution method has to be cautiously examined, if conclusions should be drawn about the cluster cross section, or the mean cluster size ?, and the number of picked up molecules.  相似文献   

19.
Here the recently proposed time-dependent quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient to cause significant ionization. By solving concurrently sets of up to 20,000 coupled 3D time-dependent Schro?dinger equations for the guide waves and corresponding sets of first order equations of motion for the Monte Carlo walkers we obtain ground state energies in close agreement with the exact values. The combined use of spherical coordinates and B-splines along the radial coordinate proves to be especially accurate and efficient for such calculations. Our results for the dipole response and the ionization of an atom with un-correlated electrons are in good agreement with the predictions of the conventional time-dependent Hartree-Fock method while the calculations with correlated electrons show enhanced ionization that is due to the electron-electron repulsion.  相似文献   

20.
金属硼化物结构与稳定性的理论研究   总被引:1,自引:1,他引:1  
用HF/3-21Gabinitio法对金属硼化物MB2/MB2(M=Li,Na,Be,Mg,Al)的75个电子态结构进行能量梯度法优化,再用大基组二次且上互作用QCISD(T)/6-311G进行单点计算,得到了结构参数总能量,为了考察各原子簇的稳定性,还对24个碎片的70多个电子态,求得相应的QCISD(T)能量,在此基础上计算了原子化能、电离能、离解通道和碎片化能,得到了原子簇的稳定性规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号