首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract –An acoustic method is outlined to detect triplet states formed by radical pair recombination in photosyn-thetic reaction centers. It is based on magnetic field effect on the probability of triplet state formation by recombination. Using a periodically modulated magnetic field in the presence of constant exciting light, a periodic modulation of the triplet state concentration is set in the sample, which is detected through the corresponding modulated heat emission, transduced to acoustic vibration of the gas phase around the sample. This effect is similar to the photoacoustic effect, except that here the light is not modulated. The feasibility of detecting such an effect was proven experimentally, by obtaining a signal from quinone-depleted reaction centers of Rhodobacter sphaeroides. The signal had twice the frequency of the magnetic field modulation; it was proportional to the light intensity and significantly stronger at the lower temperatures (in the investigated range 113–278 K). No signal was obtained from quinone-containing reaction centers, which do not produce triplets. A theoretical outline of the effect and the experimental set-up are described. The "magnitude of the effect was calibrated against ordinary photoacoustic measurements, allowing numerical evaluation of certain parameters of the triplet state ( e.g. triplet energy or yield) with the aid of auxiliary information from the literature.  相似文献   

2.
Photothermal characteristics and light‐induced structural (volume) changes of carotenoid‐containing and noncontaining photosynthetic reaction centers (RCs) were investigated by wide frequency band hydrophone. We found that the presence of carotenoid either does not play considerable role in the light‐induced conformational movements, or these rearrangements are too slow for inducing a photoacoustic (PA) signal. The kinetic component with a few tens of microseconds, exhibited by the carotenoid‐less RCs, appears to be similar to that of triplet state lifetimes, identified by other methods. The binding of terbutryn to the acceptor side is shown to affect the dynamics of the RC. Our results do not confirm large displacements or volume changes induced by the charge movements and by the charge relaxation processes in the RCs in few hundreds of microseconds time scale that accompanies the electron transfer between the primary and secondary electron acceptor quinones.  相似文献   

3.
A photoacoustic (PA) effect theory taking into account two heat sources corresponding to the radiationless relaxation processes of two states of different lifetimes and to the heat diffusion across the sample is herewith presented. Results obtained demonstrate that the amplitude and the phase of the PA signal depend on the sample's thermal properties, on its optical absorption coefficient, on the lifetime of the long-lived excited state, and on the ratio of the two heat sources. This ratio can be expressed as a function of the product of the energy of the excited state times the quantum yield of its production. Simulations of PA amplitude and phase variations vs light modulation frequency exhibit new features of the PA signal:phase inversion and fast decrease of the amplitude. Experimental verifications were carried out on solutions and gels. Fitting of the amplitude and phase variations allow us to measure the lifetime and conversion yield of the intermediate state which can be a triplet state or singlet oxygen, O2(1 delta g). The addition of an acceptor, specific to O2(1 delta g), induces changes in the amplitude of the PA signal which can be used to study the production and deactivation of this excited form of oxygen. This work demonstrates the usefulness of PA in the detection of metastable excited states such as the triplet state and singlet oxygen and in their quantitative analysis.  相似文献   

4.
The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the spin conversion is carried out by the fast transversal relaxation and Delta g mechanism. The alternative HFI mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is traced and its diffusional (viscosity) dependence is specified.  相似文献   

5.
Electrons emitted from micron-sized positively charged crystals in relatively dense gases in the presence of a levitating external field can escape recapture. The observed photoemission yield depends on the electron kinetic energy, the gas pressure, the particle size and state of charge, and the magnitude of the external field. Data and a theory are presented to describe the probability of escape. For organic crystals, photoemission due to a binuclear process, can exhibit various light intensity dependences. This may be accomplished by varying the triplet exciton concentration in the crystal. A theory to account for this effect using the concept of excitonic detrapping at recombination centers is presented.  相似文献   

6.
Ultrasonic modulation of scattered laser light was used to image objects buried in tissue-simulating turbid media. The ultrasonic wave focused into the turbid media modulated the laser light passing through the ultrasonic field. The modulated laser light collected by a photomultiplier tube reflected primarily the local mechanical and optical properties in the zone of ultrasonic modulation. A raster scanning over a heterogeneous turbid medium yielded an image of the medium based on the ultrasound-modulated optical signal. The detectability of modulated signal was estimated using diffusion theory. The dependence of the modulated signal on the off-axis distance of the detector from the optic axis and on the amplitude of ultrasound was studied. The mechanisms of ultrasonic modulation of scattered light are discussed. A theory based on the field autocorrelation function is reviewed as well.  相似文献   

7.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

8.
Abstract— Application of a static external magnetic field (3350 G) during UV-irradiation (>300 nm) reduced the time for 50% photohemolysis of human erythrocytes by the phototoxic drug ketoprofen (3-benzoyl-α-methylbenzoacetic acid) from 96 min to 78 min. This observation can be attributed to a magnetic field induced decrease in the rate of intersystem crossing (kISC) of the geminate triplet radical pair generated by the reduction of ketoprofen in its triplet excited state by erythrocyte membrane constituents, probably lipids. The decrease in kJSC results in an increase in the concentration and/or lifetime of free radicals that escape from the triplet radical pair. Thus the critical radical concentration needed to cause membrane damage and cell lysis is reached sooner in the presence of the magnetic field. In contrast, the photohemolysis induced by the photodynamic agent protoporphyrin IX was not affected by the magnetic field. Protoporphyrin IX photohemolysis, which is initiated by singlet oxygen, does not involve the initial generation of a triplet radical pair and so is not influenced by the magnetic field. The enhancement of ketoprofen-induced photohemolysis by an externally applied magnetic field is the first example of a magnetic field effect on a toxicological process involving free radicals.  相似文献   

9.
Photo-CIDNP (photochemically induced dynamic nuclear polarization) can be observed in frozen and quinone-blocked photosynthetic reaction centers (RCs) as modification of magic-angle spinning (MAS) NMR signal intensity under illumination. Studying the carotenoidless mutant strain R26 of Rhodobacter sphaeroides, we demonstrate by experiment and theory that contributions to the nuclear spin polarization from the three-spin mixing and differential decay mechanism can be separated from polarization generated by the radical pair mechanism, which is partially maintained due to differential relaxation (DR) in the singlet and triplet branch. At a magnetic field of 1.4 T, the latter contribution leads to dramatic signal enhancement of about 80,000 and dominates over the two other mechanisms. The DR mechanism encodes information on the spin density distribution in the donor triplet state. Relative peak intensities in the photo-CIDNP spectra provide a critical test for triplet spin densities computed for different model chemistries and conformations. The unpaired electrons are distributed almost evenly over the two moieties of the special pair of bacteriochlorophylls, with only slight excess in the L branch.  相似文献   

10.
The opto-acoustic effect is discussed for the case where a halogen, X2, is periodically photodissociated in the presence of H2 at moderately high pressures. If many cycles of the chain reactions, X + H2 ? HX + H and H + X2 → HX + X, take place before termination through three-body recombination, the evolution of heat in the system is governed by the exothermic chain propagation reactions rather than the recombination reaction. When stationary state conditions obtain for the H concentration, the concentration of X is governed by the photodissociation rate and the three-body recombination rate. Under these conditions the opto-acoustic signal is shown to be directly proportional to the photochemical chain length. At low frequencies the fundamental frequency component of the acoustic wave decreases as the square root of the steady component of the dissociating radiation; equivalently, at a fixed modulation depth, the signal increases as the square root of the steady component of the radiation intensity. In the high frequency limit the pressure signal becomes independent of the steady component of the radiation. At low frequencies the fundamental frequency component of the signal decreases with the modulation frequency, ω, as ω?1, whereas in the high frequency limit the signal decreases as ω?2. The phase lag in the acoustic signal is shown to depend upon the intensity of the steady component of the radiation — a characteristic of the nonlinear response of the radical concentration to changes in light intensity. An experimental method based on these results is described for direct determination of photochemical chain lengths.  相似文献   

11.
The time dependence of the magnetic field effect on radical recombination in solution has been analyzed experimentally and theoretically. For the geminate recombination of anthracene anions and dimethylaniline cations in a polar solvent, the effect originates from a magnetic field dependent production of triplet states in an initially singlet phased radical pair, induced by hyperfine interaction of the unpaired electrons with the nuclei. The magnetic field dependence of the triplet yield shows a lifetime broadening of the energy levels of the radical pair if a short delay-time between radical production and triplet observation is chosen. The agreement of this delay-time dependent broadening effect with the theoretical results proves directly the coherence of the spin motion in the radical pairs.  相似文献   

12.
The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.  相似文献   

13.
Photolysis of (17,18)O-labeled water in the presence of molecular oxygen is accompanied by transfer of (17)O and (18)O isotopes from water to oxygen, demonstrating that photoinduced oxidation of water does occur. The reaction exhibits the following isotope effect: oxidation of H(2)(17)O is faster by 2.6% (in the Earth's magnetic field) and by 6.0% (in the field 0.5 T) than that of H(2)(18)O. The effect is supposed to arise in the two spin-selective, isotope-sorting reactions-recombination and disproportionation-in the pairs of encountering HO(2) radicals. The former is spin allowed from the singlet state; the latter occurs only in the triplet one. Nuclear spin sorting produced by these reactions proceeds in opposite directions with the dominating contribution of recombination, which provides observable (17)O/(18)O isotope fractionation in favor of magnetic isotope (17)O. Neither isotope exchange nor the reaction itself occurs in the dark.  相似文献   

14.
Relaxation dynamics of an optically excited ligand field state and strong modulation of oscillator strengths of ligand field transitions by coherent acoustic phonon in gamma-Fe(2)O(3) nanocrystals were investigated through transient absorption measurements. A near-infrared pump beam prepared the lowest excited ligand field state of Fe(3+) ions preferentially on the tetrahedral coordination site. A time-delayed visible probe beam monitored the dynamics of various ligand field transitions and modification of their oscillator strengths by a coherent lattice motion. Transient absorption data exhibited dynamic features of a few distinct time scales, 100 fs, 1 ps, and 17-100 ps, as well as intense oscillatory features resulting from a coherent acoustic phonon. The initial decay of the induced absorption in 100 fs has been attributed to the exchange interaction-mediated energy transfer from the tetrahedral to octahedral Fe(3+) sites. The dynamics of slower time scales were assigned to the vibrational and electronic relaxations. Excitation of the ligand field state created a coherent acoustic phonon resulting in unusually intense modulation of the transient absorption signal despite its predominantly local nature and relatively small vibronic coupling. Excitation of each Fe(3+) ion in the nanocrystal was estimated to modulate up to 60% of its contribution to the total absorption intensity of the nanocrystal. The intense modulation of the absorption has been attributed to the strongly modulated oscillator strength of the ligand field transitions rather than oscillating Frank-Condon overlap. Dynamic modification of the metal-ligand orbital overlap and exchange interaction between the neighboring metal ions are the main factors responsible for the modulation of the oscillator strength.  相似文献   

15.
Conclusions The recombination of the radical pairs formed upon the transfer of a hydrogen atom from phenols and amines to triplet quinones in micelles is hindered upon the application of an external magnetic field and accelerated in the presence of atmospheric oxygen. The magnetic field effect is explained within the framework of a relaxation mechanism. The magnetic field has no effect on the kinetics of the deactivation of triplet exciplexes in micelles.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 464–467, February, 1986.  相似文献   

16.
Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms (at a DNA:Eb molar ratio of 5). With salt titration, this value falls to about 2.0 ms. This result suggests a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This effect may be understood considering DNA as a polyelectrolyte. The counterions in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm-1 corresponding to the symmetric stretching of the NH group of the bases and 1225 cm-1 corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.  相似文献   

17.
The magnetic field effect on the recombination kinetics of the triplet radical ion pair state (RIPS) of the Zn-porphyrin-viologen dyad (P-Ph-Vi2+) in the small unilamellar vesicles (SUV) of D,L-dipalmitoyl-alpha-phosphatidylcholine has been studied by the nanosecond laser flash photolysis technique at 5-60 degrees C. The increase in temperature from 25 to 40 degrees C enhances the rate constant (kr) of the RIPS recombination in zero magnetic field from 0.9 x 10(6) to 1.6 x 10(6) s-1, while kr is temperature insensitive at 5-25 and 40-60 degrees C. The typical break in the kr temperature dependence is observed in the temperature range of the phase transition of the SUV bilayers from the solid to the fluid state. The kr value in a strong magnetic field (B = 0.24 T) is equal to 2.7 x 10(5) s-1 and it is independent of temperature at 5-60 degrees C. The shape of the magnetic field dependence of kr is unaffected by the phase transition of the SUV bilayers and is characterized by the existence of an initial plateau of kr at B = 0 to 0.5 mT.  相似文献   

18.
A mechanism is presented explaining a reported heavy-atom-induced magnetic field effect as a consequence of non-equilibrium triplet sublevel population in an intermediate exciplex. The triplet exciplex spin polarization is induced by sub-level-selective intersystem crossing from the exciplex triplet to its singlet ground state and is decreased by an external magnetic field. The theory accounts almost quantitatively for the observed influence of magnetic field strength and heavy-atom substituents.  相似文献   

19.
Abstract— Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95±5% for spheroidene, 65±5% for 3,4-dihydrospheroidene and 60±10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0±0.5 μs. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60±5 μs. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.  相似文献   

20.
A method is presented to measure linear dichroic triplet-minus-singlet absorbance difference spectra using absorbance-detected magnetic resonance of the triplet state in zero magnetic field. Orientational selection is achieved by using a linearly-polarised microwave field. The microwave-induced change in the absorbance of light with the electric vector parallel or perpendicular to the microwave field vector is monitored using a Morvue photoelastic modulator and an analyzing polarizer. The method is applied to reaction centres of the photosynthetic bacterium Rhodopseudomonas viridis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号