首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lauhon LJ  Ho W 《Faraday discussions》2000,(117):249-55; discussion 257-75
A scanning tunneling microscope (STM) operating at 9 K in ultrahigh vacuum was used to initiate a bimolecular reaction between isolated hydrogen sulfide and dicarbon molecules on the Cu(001) surface. The reaction products ethynyl (CCH) and sulfhydryl (SH) were identified by inelastic electron tunneling spectroscopy (STM-IETS) and by sequentially removing hydrogen atoms from an H2S molecule using energetic tunneling electrons. For comparison, the thermal diffusion and reaction of H2S and CC at 45 K and H2O and CC at 9 K were also observed.  相似文献   

2.
Using an ultrahigh vacuum scanning tunneling microscope (STM), we have explored the interactions of isolated five-membered heterocycles, pyrrole, thiophene, pyrrolidine, and tetrahydrothiophene, with the Cu(001) surface at 9 K. Pyrrolidine was also studied on the Ag(001) surface. Important distinctions in bonding, vibrational spectra, and vibrationally mediated negative differential resistance were observed with the aid of single-molecule inelastic electron tunneling spectroscopy (STM-IETS).  相似文献   

3.
The electronic excitations induced with tunneling electrons into adlayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) have been investigated by in situ fluorescence spectroscopy in scanning tunneling microscopy (STM). A minute area of the surface is excited by an electron tunneling process in STM. Fluorescence spectra strongly depend on the coverage of PTCDA on Ag(111). The adsorption of the first PTCDA layer quenches the intrinsic surface plasmon originated from the clean Ag(111). When the second layer is formed, fluorescence spectra are dominated by the signals from PTCDA, which are interpreted as the radiative decay from the manifold of first singlet excited state (S(1)) of adsorbed PTCDA. The fluorescence of PTCDA is independent of the bias polarity. In addition, the fluorescence excitation spectrum agrees with that by optical excitation. Both results indicate that S(1) is directly excited by the inelastic impact scattering of electrons tunneling within the PTCDA adlayer.  相似文献   

4.
The advent of milli-kelvin scanning tunneling microscopes (STM) with inbuilt magnetic fields has opened access to the study of magnetic phenomena with atomic resolution at surfaces. In the case of single atoms adsorbed on a surface, the existence of different magnetic energy levels localized on the adsorbate is due to the breaking of the rotational invariance of the adsorbate spin by the interaction with its environment, leading to energy terms in the meV range. These structures were revealed by STM experiments in IBM Almaden in the early 2000s for atomic adsorbates on CuN surfaces. The experiments consisted in the study of the changes in conductance caused by inelastic tunneling of electrons (IETS, inelastic electron tunneling spectroscopy). Manganese and Iron adatoms were shown to have different magnetic anisotropies induced by the substrate. More experiments by other groups followed up, showing that magnetic excitations could be detected in a variety of systems: e.g. complex organic molecules showed that their magnetic anisotropy was dependent on the molecular environment, piles of magnetic molecules showed that they interact via intermolecular exchange interaction, spin waves were excited on ferromagnetic surfaces and in Mn chains, and magnetic impurities have been analyzed on semiconductors. These experiments brought up some intriguing questions: the efficiency of magnetic excitations was very high, the excitations could or could not involve spin flip of the exciting electron and singular-like behavior was sometimes found at the excitation thresholds. These facts called for extended theoretical analysis; perturbation theories, sudden-approximation approaches and a strong coupling scheme successfully explained most of the magnetic inelastic processes. In addition, many-body approaches were also used to decipher the interplay between inelastic processes and the Kondo effect. Spin torque transfer has been shown to be effective in changing spin orientations of an adsorbate in theoretical works, and soon after it was shown experimentally. More recently, the previously mentioned strong coupling approach was extended to treat the excitation of spin waves in atomic chains and the ubiquitous role of electron–hole pair creation in de-exciting spins on surfaces has been analyzed. This review article expounds these works, presenting the theoretical approach by the authors while trying to thoroughly review parallel theoretical and experimental works.  相似文献   

5.
A scanning tunneling microscope (STM) was used to extract the images of single, isolated pyridine molecules adsorbed on Ag(110) and to record their vibrational spectrum at 13 K. On the STM image, the pyridine molecule appears as an elongated protrusion along the [001] direction on top of a silver atom, indicating that it is bonded through its nitrogen lone pair electrons. STM inelastic electron tunneling spectroscopy of the adsorbed pyridine revealed C-D and C-H stretch modes at 282 and 378 meV, respectively.  相似文献   

6.
In elastic peak electron spectroscopy (EPES), the nearest vicinity of elastic peak in the low kinetic energy region reflects electron inelastic and quasielastic processes. Incident electrons produce surface excitations, inducing surface plasmons, with the corresponding loss peaks separated by 1–20 eV energy from the elastic peak. In this work, X‐ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for determining surface atomic composition and bulk density, whereas atomic force microscopy (AFM) is applied for determining surface morphology and roughness. The component due to electron recoil on hydrogen atoms can be observed in EPES spectra for selected primary electron energies. Simulations of EPES predict a larger contribution of the hydrogen component than observed experimentally, where hydrogen deficiency is observed. Elastic peak intensity is influenced more strongly by surface morphology (roughness and porosity) than by surface excitations and quasielastic scattering of electrons by hydrogen atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its "P" and "T" conformations. The "P" conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the "T" ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The "T" conformation of B2P can be switched to the "P" while the "P" conformation of B4P can be switched to the "T" one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in "P" and "T" conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.  相似文献   

8.
Inelastic tunneling spectroscopy (IETS) measurement using scanning tunneling microscopy (STM) with a commercially available STM set up is presented. The STM-IETS spectrum measured on an isolated trans-2-butene molecule on the Pd(110) shows a clear vibrational feature in d2I/dV2 at the bias voltage of 360 mV and -363 mV, which corresponds to the nu(C-H) mode (d2I/dV2 approximately 10 nA/V2). In addition, we have obtained an image by mapping the vibrational feature of nu(C-H) in d2I/dV2. The image is obtained by scanning the tip on the surface with the feedback loop activated while the modulation voltage is superimposed on the sample voltage. With the method that is readily performable with conventional software, we have clearly differentiated the molecules of trans-2-butene and butadiene through the mapping of the vibrational feature, demonstrating its capability of chemical identification in atomic scale.  相似文献   

9.
Scanning tunneling microscopy (STM) manipulation techniques have proven to be a powerful method for advanced nanofabrication of artificial molecular architectures on surfaces. With increasing complexity of the studied systems, STM manipulations are then extended to more complicated structural motifs. Previously, the dissociation and construction of various motifs have been achieved, but only in a single direction. In this report, the controllable scission and seamless stitching of metal–organic clusters have been successfully achieved through STM manipulations. The system presented here includes two sorts of hierarchical interactions where coordination bonds hold the metal–organic elementary motifs while hydrogen bonds among elementary motifs are directly involved in bond breakage and re‐formation. The key to making this reversible switching successful is the hydrogen bonding, which is comparatively facile to be broken for controllable scission, and, on the other hand, the directional characteristic of hydrogen bonding makes precise stitching feasible.  相似文献   

10.
We review our recent studies of photochemistry and plasmon chemistry of dimethyl disulfide, (CH3S)2, molecules adsorbed on metal surfaces using a scanning tunneling microscope (STM). The STM has been used not only for the observation of surface structures at atomic spatial resolution but also for local spectroscopies. The STM combined with optical excitation by light can be employed to investigate chemical reactions of single molecules induced by photons and localized surface plasmons. This technique allows us to gain insights into reaction mechanisms at a single molecule level. The experimental procedures to examine the chemical reactions using the STM are briefly described. The mechanism for the photodissociation reaction of (CH3S)2 molecules adsorbed on metal surfaces is discussed based on both the experimental results obtained with the STM and the electronic structures calculated by density functional theory. The dissociation reaction of the (CH3S)2 molecule induced by the optically excited plasmon in the STM junction between a Ag tip and metal substrate is also described. The reaction mechanism and pathway of this plasmon-induced chemical reaction are discussed by comparison with those proposed in plasmon chemistry.  相似文献   

11.
We have investigated the mechanism of the chemical reaction of the benzene molecule adsorbed on Cu(110) surface induced by the injection of tunneling electrons using scanning tunneling microscopy (STM). With the dosing of tunneling electrons of the energy 2-5 eV from the STM tip to the molecule, we have detected the increase of the height of the benzene molecule by 40% in the STM image and the appearance of the vibration feature of the nu(C-H) mode in the inelastic tunneling spectroscopy (IETS) spectrum. It can be understood with a model in which the dissociation of C-H bonds occurs in a benzene molecule that induces a bonding geometry change from flat-lying to up-right configuration, which follows the story of the report of Lauhon and Ho on the STM-induced change of benzene on the Cu(100) surface. [L. J. Lauhon and W. Ho, J. Phys. Chem. A 104, 2463 (2000)]. The reaction probability shows a sharp rise at the sample bias voltage at 2.4 V, which saturates at 3.0 V, which is followed by another sharp rise at the voltage of 4.3 V. No increase of the reaction yield is observed for the negative sample voltage up to 5 eV. In the case of a fully deuterated benzene molecule, it shows the onset at the same energy of 2.4 eV, but the reaction probability is 10(3) smaller than the case of the normal benzene molecule. We propose a model in which the dehydrogenation of the benzene molecule is induced by the formation of the temporal negative ion due to the trapping of the electrons at the unoccupied resonant states formed by the pi orbitals. The existence of the resonant level close to the Fermi level ( approximately 2.4 eV) and multiple levels in less than approximately 5 eV from the Fermi level, indicates a fairly strong interaction of the Cu-pi(*) state of the benzene molecule. We estimated that the large isotope effect of approximately 10(3) can be accounted for with the Menzel-Gomer-Redhead (MGR) model with an assumption of a shallow potential curve for the excited state.  相似文献   

12.
A new analysis of reflection electron energy‐loss spectroscopy (REELS) spectra is presented. Assuming inelastic scattering in the bulk to be quantitatively understood, this method provides the distribution of energy losses in a single surface excitation in absolute units without the use of any fitting parameters. For this purpose, REELS spectra are decomposed into contributions corresponding to surface and volume excitations in two steps: first the contribution of multiple volume excitations is eliminated from the spectra and subsequently the distribution of energy losses in a single surface scattering event is retrieved. This decomposition is possible if surface and bulk excitations are uncorrelated, a condition that is fulfilled for medium‐energy electrons because the thickness of the surface scattering layer is small compared with the electron elastic mean free path. The developed method is successfully applied to REELS spectra of several materials. The resulting distributions of energy losses in an individual surface excitation are in good agreement with theory. In particular, the so‐called begrenzungs effect, i.e. the reduction of the intensity of bulk losses due to coupling with surface excitations near the boundary of a solid‐state plasma, becomes clearly observable in this way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Wrong handedness? No problem! K.‐H. Ernst et al. describe in their Communication on page 4065 ff. how the chirality of single adsorbates can be switched into the opposite enantiomeric state. By using inelastically tunneling electrons from the tip of a scanning tunneling microscope in an ultra‐high vacuum, certain molecular vibrations are excited that, in turn, cause different actions such as hopping, rotation, and chirality conversion at the surface.

  相似文献   


14.
A series of Pt(II) complexes with tetradentate luminophores has been designed, synthesized, and deposited on coinage metal surfaces with the aim to produce highly planar self‐assembled monolayers. Low‐temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations reveal a significant initial nonplanarity for all complexes. A subsequent metal‐catalyzed separation of the nonplanar moiety at the bridging unit via the scission of a C?N bond is observed, leaving behind a largely planar core complex. The activation barrier of this bond scission process is found to depend strongly on the chemical nature of both bridging group and coordination plane, and to increase from Cu(111) through Ag(111) to Au(111).  相似文献   

15.
We present our investigation on the spin relaxation of cobalt phthalocyanine (CoPc) films on Au(111) (CoPc/Au(111)) surface using scanning tunneling microscopy and spectroscopy. The spin relaxation time derived from the linewidth of spin-flip inelastic electron tunneling spectroscopy is quantitatively analyzed according to the Korringa-like formula. We find that although this regime of the spin relaxation time calculation by just considering the exchange interaction between itinerant conduction electrons and localized d-shells (s-d exchange interaction) can successfully reproduce the experimental value of the adsorbed magnetic atom, it fails in our case of CoPc/Au(111). Instead, we can obtain the relaxation time that is in good agreement with the experimental result by considering the fact that the π electrons in CoPc molecules are spin polarized, where the spin polarized π electrons extended at the Pc macrocycle may also scatter the conduction electrons in addition to the localized d spins. Our analyses indicate that the scattering by the π electrons provides an efficient spin relaxation channel in addition to the s-d interaction and thus leads to much short relaxation time in such a kind of molecular system on a metal substrate.  相似文献   

16.
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.  相似文献   

17.
A single propene molecule, located in the junction between the tip of a scanning tunneling microscope (STM) and a Cu(211) surface can be dehydrogenated by inelastic electron tunneling. This reaction requires excitation of the asymmetric C-H stretching vibration of the ═CH(2) group. The product is then identified by inelastic electron tunneling action spectroscopy (IETAS).  相似文献   

18.
Fibrinogen adsorption on gold and platinum surfaces has been studied with electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS), 125I labeling, and scanning tunneling microscopy (STM). Stable images of single molecules have been obtained, but are rare. ESCA, SIMS, and labeling studies confirm that absorbed fibrinogen is present on samples at monolayer and submonolayer coverages even when STM images show only a bare substrate. Imaging is more reproducible at high coverages at which single molecules cannot be resolved. Possible explanations for the failure of STM to observe adsorbed fibrinogen molecules are discussed.  相似文献   

19.
20.
Direct investigation of the electronic structure of catalyst surfaces on the near-atomic scale in general has not been impossible in the past. However, with the advent of the scanning tunneling microscope (STM), the opportunity arises for incorporating the scanning tunneling spectroscopy (STS) for correlation in-situ surface electronic structure with topography on a sub-nanometer scale. In this paper, we report the STS results of thin film TiO2 and Pt-deposited TiO2 annealed at 450℃. It was found that the TiO2 semiconductor changes from n-type to p-type after Pt deposition.Fig. 1 shows the surface electronic property (Ⅰ-Ⅴ curve) of thin TiO2 film measured in air by STS. A steep descent of the anodic tunneling current at ca.- 1.0 Ⅴ and a rapid ascent of cathodic tunneling current at ca. +2.0V. The zero bias represents the Fermi level (Ef). Ef is situated at the Ecb side indicating that the thin TiO2 film possesses the same band gap as that of bulk TiO2 phase ( Egs =3.0 to 3.2 eV). For the sample of Pt-deposited TiO2 film, Pt/(Pt+Ti+O) atomic ratio≈0.2, which indicates that the surface of TiO2 film is partly covered by Pt particles, and there are two types of Ⅰ-Ⅴ curves to be detected. One of them (Fig.2a)is attributed to the electronic property of TiO2, which has same Egs as that shown in Fig. 1. However, the Ef is transferred to valence side (△≈1eV). This phenomenon hints that TiO2 is doped by an impurity which can introduce h+ into TiO2 lattice.Such a type of defects may be described by Ti1-xPtxO2(h )2x, here Pt+2 as a substitutional site of Ti+4. Fig.2b is the Ⅰ-Ⅴ curve of a Pt particle situated on a TiO2 particle contained Ti1-xPtxO2(h )2x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号