首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The intrinsic gas-phase stability of bicyclic secondary carbocations has been determined by Dissociative Proton Attachment of chlorides and alcohols, respectively. From these data, Gibbs free energies for hydride transfer relative to 1-adamantyl (Delta(r)G degrees (8,exp)) are derived after application of appropriate leaving group corrections, and good agreement with theoretical values, (Delta(r)G degrees (8,comp)), calculated at the G2(MP2) or MP2/6-311G(d,p) level, is reached (Table 1). The relative rate constants for solvolysis (log(k/k(0))) of the bicyclic secondary derivatives correlate with the stabilities of the respective carbocations in the same manner as tertiary bridgehead derivatives, but simple monoderivatives and acyclic derivatives solvolyze faster than predicted on the grounds of the ion stabilities. The corresponding stabilities of cyclopropyl- and benzyl-substituted carbocations have been obtained by a combination of experimental and computational data available in the literature with computational methods. Correlation of the rate constants for solvolysis vs ion stabilities for these compounds reveals a trend similar to that observed for bridgehead derivatives, but with much more scatter, which is attributed to nucleophilic solvent participation and/or nucleophilic solvation.  相似文献   

2.
3.
Several very extended (0.5-1 micros) molecular dynamics (MD) simulations of parallel and antiparallel G-quadruplex DNA strongly suggest that in the presence of suitable cations the quadruplex not only remains stable in the gas phase, but also displays a structure that closely resembles that found in extended (25-ns long) trajectories in aqueous solution. In the absence of the crucial cations, the trajectories become unstable and in general the quadruplex structure is lost. To our knowledge, this is the first physiologically relevant structure of DNA for which very large MD simulations suggest that the structure in water and in the gas phase are indistinguishable.  相似文献   

4.
Titanium oxide clusters were formed in the gas phase by the laser ablation of a Ti rod in the presence of oxygen in a He gas. Not only stoichiometric but also nonstoichiometric titanium oxide clusters, Ti(n)O(2n+x)(+) (n = 1-22 and x = -1-3), were formed. The content of oxygen atoms depends strongly on a partial pressure of oxygen. Gold clusters, Au(m) (m = 1-4), were generated by the laser ablation, which were then deposited on Ti(n)O(2n+x) clusters. The formation of Au(m)Ti(n)O(2n+x)(+) follows electron transfer from Au(m) to Ti(n)O(2n+x)(+). The reactivity of Au(m)Ti(n)O(2n+x)(+) cluster ions with CO was examined for different m, n, and x by the mass spectrometry. It was found that Au(m) on Ti(n)O(2n-1)(+) are less reactive than those on the other Ti(n)O(2n+x)(+) (x = 0 and 1). In addition, the reactivity is highest when Au(m) (m = 1 and 3) is on the stoichiometric titanium oxide (x = 0), whereas the reactivity is also high when Au(2) is on the oxygen-rich titanium oxide (x = 1). The reactivity was found to relate to geometrical structures of Au(m)Ti(n)O(2n+x)(+), which were studied by density functional calculations.  相似文献   

5.
The spin‐forbidden reaction mechanism of Ta (4F, 5d36s2) with CH3CN, on two different potential surfaces (PESs) has been investigated at the B3LYP, MP2, and CCSD level of theory. Crossing points between the PESs are located using different methods, and possible spin inversion processes are discussed by means of spin‐orbit coupling calculations. As a result, the reaction system will change its spin multiplicities near this crossing seam, leading to a significant decrease in the barrier of 2‐4TS3 from 24.17 to 5.36 kcal/mol, which makes the reaction access to a lower energy pathway and accelerate the reaction rate. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The class of coordination polymers known as metal-organic frameworks (MOFs) has three-dimensional porous structures that are considered as a promising alternative to zeolites and other nanoporous materials for catalysis, gas adsorption, and gas separation applications. In this paper, we present the first study of gas diffusion inside an MOF and compare the observed diffusion to known behaviors in zeolites. Using grand canonical Monte Carlo and equilibrium molecular dynamics, we calculate the adsorption isotherm and self-, corrected, and transport diffusivities for argon in the CuBTC metal-organic framework. Our results indicate that diffusion of Ar in CuBTC is very similar to Ar diffusion in silica zeolites in magnitude, concentration, and temperature dependence. This conclusion appears to apply to a broad range of MOF structures.  相似文献   

7.
Observations on metastable peaks resulting from the unimolecular decomposition of ion clusters show that intensity variations as a function of cluster size can reveal the presence of stable cluster configurations. This technique has been used to confirm that (H2O)21H+ and (D2O)21D+ are stable ion clusters, and the method also provides evidence to suggest that Ar19+ is a particularly stable species.  相似文献   

8.
The dynamic processes of N(1s) core-hole excitation in gas-phase CH3CN molecule have been studied at both Hartree-Fock and hybrid density-functional theory levels. The vibrational structure is analyzed for fully optimized core-excited states. Frank-Condon factors are obtained using the linear coupling model for various potential surfaces. It is found that the vibrational profile of the N-K absorption can be largely described by a summation of two vibrational progressions: a structure-rich profile of nu(CN) stretching mode and a large envelope of congestioned vibrational levels related to the strong (-C-CN) terminal bending bond. Excellent agreement between theoretical and experimental spectra is obtained.  相似文献   

9.
The classical naked cluster ions of the post-transition elements that are stable in solid compounds and their lower charged analogues observed in mixed metal beams reflect the reduced number of good bonding orbitals. New cluster ions of indium that are hypoelectronic (fewer than 2n+2 skeletal bonding electrons) because of distortions or the bonding of heterometal atoms within the clusters are described. A large family of new, orbital-rich clusters of the group III and IV transition metals sheathed by halide are all centered by a wide variety of heteroatoms. Factors in their stability, possible analogous naked cluster targets, and some calculations are considered.  相似文献   

10.
The ubiquity and favorable medicinal properties of flavonoids make essential the determination of flavonoid levels in various matrices. While developing a liquid chromatography/tandem mass spectrometry method for the analysis of the flavonoid, apigenin, anionic oligomers and nitrate- and chloride-bound clusters of this compound were observed. Tandem mass spectrometry of these oligomers and cluster ions showed the cleavage of apigenin molecules from the precursor. The observation of these cluster ions shows the possibility of post-column derivatization techniques to enhance specificity in analysis. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The structural and thermodynamic properties of Na+(CH3CN)n, I-(CH3CN)n, and NaI(CH3CN)n clusters have been investigated by means of room-temperature Monte Carlo simulations with model potentials developed to reproduce the properties of small clusters predicted by quantum chemistry. Ions are found to adopt an interior solvation shell structure, with a first solvation shell containing approximately 6 and approximately 8 acetonitrile molecules for large Na+(CH3CN)n and I-(CH3CN)n clusters, respectively. Structural features of Na+(CH3CN)n are found to be similar to those of Na+(H2O)n clusters, but those of I-(CH3CN)n contrast with those of I-(H2O)n, for which "surface" solvation structures were observed. The potential of mean force calculations demonstrates that the NaI ion pair is thermodynamically stable with respect to ground-state ionic dissociation in acetonitrile clusters. The properties of NaI(CH3CN)n clusters exhibit some similarities with NaI(H2O)n clusters, with the existence of contact ion pair and solvent-separated ion pair structures, but, in contrast to water clusters, both types of ion pairs adopt a well-defined interior ionic solvation shell structure in acetonitrile clusters. Whereas contact ion pair species are thermodynamically favored in small clusters, solvent-separated ion pairs tend to become thermodynamically more stable above a cluster size of approximately 26. Hence, ground-state charge separation appears to occur at larger cluster sizes for acetonitrile clusters than for water clusters. We propose that the lack of a large Na+(CH3CN)n product signal in NaI(CH3CN)n multiphoton ionization experiments could arise from extensive stabilization of the ground ionic state by the solvent and possible inhibition of the photoexcitation mechanism, which may be less pronounced for NaI(H2O)n clusters because of surface solvation structures. Alternatively, increased solvent evaporation resulting from larger excess energies upon photoexcitation or major solvent reorganization on the ionized state could account for the observed solvent-selectivity in NaI cluster multiphoton ionization.  相似文献   

13.
Xanthones with amino substituents were synthesized to diminish the photoreactivity of the xanthone chromophore with DNA, with the objective of using these molecules to study their binding dynamics with DNA. The aminoxanthones showed a strong solvatochromic effect on their singlet and triplet excited-state photophysics, where polar solvents led to a decrease of the energies for the excited states. Quenching of the triplet excited states by nitrite anions was used to determine the binding dynamics, and a residence time in the microsecond time domain was estimated for the bound 2-aminoxanthone with DNA. The quenching experiments performed showed that this methodology will not be applicable to study the binding dynamics of a wide variety of guests with DNA.  相似文献   

14.
A general approach to revealing correlations between the structure of molecules and their reactivity in fragmentation processes under electron impact conditions based on the use of generalized structural and mass spectral characteristics is suggested. The characteristics were obtained using information theory, molecular graphs, and absolute reaction rates. Information topological indices of molecular graphs were used as generalized structural characteristics of molecules. They are a quantitative measure of the structural complexity of molecules and are expressed in information units. The gas-phase process of fragmentation of molecules under electron impact was used as a general reaction series for all volatiles. In terms of information theory, the mass spectrum represents the distribution of probabilities of the formation of ions of each type, and the information entropy of this distribution appears to be an integral characteristic of the reactivity of a molecule during fragmentation under electron impact in the gas phase. Using organic and organometallic compounds of several classes (ferrocene derivatives, arylsilanes, aromatic azo compounds,etc.) as examples, linear correlations between the information indices of the mass spectra and the information topological indices of the appropriate molecular graphs or electronic parameters of molecules have been found, which testifies that the approach suggested is adequate.Translated fromIzvestiya Akodemii Nouk. Seriya Khimicheskaya, No. 11, pp. 2683–2688, November, 1996.  相似文献   

15.
Formation and dissolution of metals are two of the oldest technical chemical processes. On the atomic scale, these processes are based on the formation and cleavage of metal-metal bonds. During the past 15 years we have studied intensively the intermediates during the formation process of metals, i.e. the formation of compounds containing many metal-metal bonds between naked metal atoms in the center and ligand-bearing metal atoms at the surface. We have called the clusters metalloid or, more generally, elementoid clusters. Via a retrosynthetic route, the many different Al and Ga metalloid clusters which have been structurally characterized allow us to understand also the dissolution process; i.e. the cleavage of metal-metal (M-M) bonds. However, this process can be detected much more directly by the reaction of single metal atom clusters in the gas phase under high vacuum conditions. A suitable tool to monitor the dissolution process of a metal cluster in the gas phase is FT-ICR (Fourier transform ion cyclotron resonance) mass spectrometry. Snapshots during these cleavage processes are possible because only every 1-10 s is there a contact between a cluster molecule and an oxidizing molecule (e.g. Cl2). This period is long, i.e. the formation of the primary product (a smaller metal atom cluster) is finished before the next collision happens. We have studied three different types of reaction:(1) Step-by-step fragmentation of a structurally known metalloid cluster allows us to understand the bonding principle of these clusters because in every step only the weakest bond is broken.(2) There are three oxidation reactions of an Al13(-) cluster molecule with Cl2, HCl and O2 central to this review. These three reactions represent three different reaction types, (a) an exothermic reaction (Cl2), (b) an endothermic reaction (HCl), and (c) a kinetically limited reaction based on spin conservation rules (O2).(3) Finally, we present the reaction of a metalloid cluster with Cl2 in order to show that in this cluster only the central naked metal atoms are oxidized, and a smaller metalloid cluster results containing the entire protecting shell as the primary cluster.All the experimental results, supported by quantum chemical calculations, give a rough idea about the complex reaction cascades which occur during the dissolution and formation of metals. Furthermore, these results cast a critical light on many simplifying and generalizing rules in order to understand the bonding and structure of metal clusters. Finally, the experiments and some recent results provided by physical measurements on a crystalline Ga(84) compound build a bridge to nanoscience; i.e. they may be a challenge for chemistry in the next decades, since it has been shown that only with a perfect orientation of nanoscale metal clusters, e.g. in a crystal, can novel, unexpected properties (e.g. superconducting nanoscale materials) be obtained.  相似文献   

16.
Consecutive addition and elimination reactions have been observed following the interaction of Ti+ with isobutylene beam expansion. Clusters provide a feasible and valuable approach for understanding the mechanism of ionic polymerization, and how the size of polymer chains is controlled in such a process.  相似文献   

17.
The reactions of metal carbonyl anions (M(CO)n?; M = Cr, Mn and Fe; n = 1–3) with n-heptane, water and methanol were studied with use of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an external ion source. The M(CO)n? ions were formed in the FT-ICR cell by collision-induced dissociation of the most abundant primary ion generated by electron impact of the appropriate metal carbonyl compound present in the external ion source. The M(CO)n? ions were allowed subsequently to undergo non-reactive collisions with argon in order to remove possible excess internal/translational energy prior to the ion/molecule reaction. Only the Cr(CO)3?, Mn(CO)3? and Fe(CO)2? ions react with n-heptane. This reaction proceeds by loss of H2 from the collision complex and the Cr(CO)3? and Fe(CO)2? ions react about three times more efficiently than the Mn(CO)3? ion. With water, Mn(CO)? and Fe(CO)3? are unreactive, whereas the other ions react by loss of one or two CO molecules from the collision complex. The rate of the reaction with water decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2?, Fe(CO)?, Mn(CO)3? and Mn(CO)2?. With methanol, the Cr(CO)2? ion reacts by loss of two CO molecules from the collision complex, whereas loss of one CO molecule and elimination of CO + H2 occur in the reaction with Cr(CO)3?. Competing loss of CO and one or two H2 molecules occurs in the reactions of Mn(CO)3? and Fe(CO)2? with methanol. The rate of the reaction with methanol decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2? and Mn(CO)3?.  相似文献   

18.
The open-shell benzoylnitrene radical anion, readily generated by electron ionization of benzoylazide, undergoes unique chemical reactivity with radical reagents and Lewis acids in the gas phase. Reaction with nitric oxide, NO, proceeds by loss of N2 and formation of benzoate ion. This novel reaction is also observed to occur with phenylnitrene anion, forming phenoxide. Similar reactivity was observed in the reaction between benzoylnitrene radical anion and NO2, forming benzoate ion and nitrous oxide. Electronic structure calculations indicate that the reaction has a high-energy barrier that is overcome by the energy released by bond formation. Benzoylnitrene radical anion also transfers oxygen anion to NO and NO2 as well as to CS2 and SO2. In contrast, phenylnitrene anion reacts with carbon disulfide by C+ or CS+ abstraction, forming S- or S2-. Electronic structure calculations indicate that benzoylnitrene in the ground state resembles a slightly polarized benzoate anion, but with a free radical localized on the nitrogen.  相似文献   

19.
Laser evaporation of MoS(2) nanoflakes gives negatively charged magic number clusters of compositions Mo(13)S(25) and Mo(13)S(28), which are shown to have closed-cage structures. The clusters are stable and do not show fragmentation in the post-source decay analysis even at the highest laser powers. Computations suggest that Mo(13)S(25) has a central cavity with a diameter of 4.5 A. The nanosheets of MoS(2) could curl upon laser irradiation, explaining the cluster formation.  相似文献   

20.
Reactions of oxygen-containing molybdenum clusters MoxOy (x = 1–3, y = 1–9) with iron carbonyl ions Fe(CO) n + (n = 1–3) were studied by the ion cyclotron resonance technique. The reactions were found to yield mixed Fe-Mo oxo clusters MoxOyFe+ (x = 2, 3; y = 5, 6, 8, 9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号