首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Silica films with honeycomb-like structure were successfully obtained by emulsion method. Emulsion films prepared by the Dip-Withdrawing method were dried at 180 °C for 2 h and sintered at 500 °C, the films turned from superhydrophilic to superhydrophobic after being modified by octyltrimethoxysilane (OTMS) to form a self-assembled monolayer (SAM) with low surface energy. The surface structures and the thickness of the silica emulsion films were observed by scanning electron microscopy (SEM), and the results showed that the emulsion method had a similar effect to the phase separation one on producing the honeycomb-like structure that highly influenced the wettability of solid surface.  相似文献   

2.
Transparent superhydrophobic films based on silica nanoparticles   总被引:1,自引:0,他引:1  
We demonstrate a layer-by-layer processing scheme that can be utilized to create transparent superhydrophobic films from SiO2 nanoparticles of various sizes. By controlling the placement and level of aggregation of differently sized nanoparticles within the resultant multilayer thin film, it is possible to optimize the level of surface roughness to achieve superhydrophobic behavior with limited light scattering. Transparent superhydrophobic films were created by the sequential adsorption of silica nanoparticles and poly(allylamine hydrochloride). The final assembly was rendered superhydrophobic with silane treatment. Optical transmission levels above 90% throughout most of the visible region of the spectrum were realized in optimized coatings. Advancing water droplet contact angles as high as 160 degrees with low contact angle hysteresis (<10 degrees ) were obtained for the optimized multilayer thin films. Because of the low refractive index of the resultant porous multilayer films, they also exhibited antireflection properties.  相似文献   

3.
We herein report a simple and effective method to fabricate excellent transparent superhydrophobic coatings. 3-Aminopropytriethoxysilane (APTS)-modified hollow silica nanoparticle sols were dip-coated on slide glasses, followed by thermal annealing and chemical vapor deposition with 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (POTS). The largest water contact angle (WCA) of coating reached as high as 156° with a sliding angle (SA) of ≤2° and a maximum transmittance of 83.7%. The highest transmittance of coated slide glass reached as high as 92% with a WCA of 146° and an SA of ≤6°. A coating simultaneously showing both good transparency (90.2%) and superhydrophobicity (WCA: 150°, SA: 4°) was achieved through regulating the concentration of APTS and the withdrawing speed of dip-coating. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the morphology and structure of nanoparticles and coating surfaces. Optical properties were characterized by a UV-visible spectrophotometer. Surface wettability was studied by a contact angle/interface system. The effects of APTS concentration and the withdrawing speed of dip-coating were also discussed on the basis of experimental observations.  相似文献   

4.
5.
Fabrication of superhydrophobic surface was achieved by electroless deposition of silver film and subsequent immersion into a mixture of stearic acid and cysteamine. The resultant superhydrophobic surface with flower and fall‐leaves like structure showed lotus leaf effect with the water contact angle of about 154° making copper surface water repellant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Superhydrophobic coatings are one of the recent hot topics in industrial applications as well as academic studies. The mimicking lotus leaves' superhydrophobic properties have been successfully transferred to real-life applications. However, the current preparation methods used to obtain superhydrophobic coatings are still complex, commonly are not transparent and/or not durable.In the present study, a new relatively simple way to prepare superhydrophobic coatings on polymeric films is described. First, superhydrophobic silica microparticles (MPs) were synthesized by fluorination of SiO2 MPs produced by a modified Stöber method. Briefly, tetraethyl orthosilicate was polymerized in an ethanol/water continuous phase under basic conditions, and the resultant SiO2 MPs were dispersed in heptane as a continuous phase and reacted with 1H,1H,2H,2H-perfluorododecyltrichlorosilane (FTS) to yield FTS-SiO2 MPs, which were dried and dispersed in decane. Superhydrophobic thin coatings were then produced by a ‘throwing stones’ sonication technique and deposited onto polycarbonate, polypropylene, polyethylene, and polyurethane films. The coatings are durable, may be transparent, and exhibit self-cleaning properties for the specific practical applications. The MPs and coated polymeric films were characterized by dynamic light scattering, high-resolution scanning electron microscopy, water contact and sliding angle measurements, and infrared and x-ray photoelectron spectroscopy. This ultrasound-assisted coating process may be upscaled and applied to many polymeric films, for instance polymethyl methacrylate, polystyrene, and polyvinyl chloride. Various applications are envisaged, including but not limited to self-cleaning windows, anti-sticking of snow to antennas and windows, solar panels, roof tiles, agricultural applications, corrosion resistance, and anti-biofouling.  相似文献   

7.
An easy and effective method to prepare superhydrophobic thin film has been developed. The film with optically transparent and low refractive index was composed by one-step coating with modified silica nanoparticles. The silica nanoparticles were prepared by sol–gel process of hydrolysis and condensation of alkoxysilane compounds and then surface modification silica nanoparticles, 50 ± 10 nm, were accomplished using methoxytrimethylsilane (MOTMS). Water contact angle of film increased with the weight of MOTMS of silica sol. When the weight of MOTMS was optimized, the water contact angle and sliding angle of film were 152.8° and less than 10°, respectively. The transmittance of film was also increased as compared to the un-coated microscope glass slide, from 91 to 93.5 %. The refractive index of the film was approximately 1.09 as measured by ellipsometer. The superhydrphobic thin film was also successfully made by using spray coating and the water contact angle of this film was more than 160°. Surface morphology of difference coating methods, dip and spray, were studied. Our result suggests that the film can be applied for superhydrophobicity and optical applications.  相似文献   

8.
为研究改性硅胶对挥发性有机废气的吸附性能,分别采用十六烷基三甲氧基硅烷、辛基三乙氧基硅烷、苯基三甲氧基硅烷、一甲基三乙氧基硅烷对硅胶进行气相改性处理,试验研究了不同改性剂、改性时间对硅胶饱和吸附率的影响,考察了改性硅胶对甲苯、水二组分体系的吸附选择性.结果表明,硅胶对甲苯的吸附主要为物理吸附,长链的硅烷改性剂在60℃、...  相似文献   

9.
10.
Physicomechanical and optical properties of photocurable compositions as functions of the structure of oligoorganosiloxanes, the ratio of components, and the type of photoinitiator are reported. Prospective uses of photocurable organosilicon compositions as optical adhesives and sealants are demonstrated.  相似文献   

11.
A series of trialkoxysilane compounds tipped with primary amine groups were used to functionalize the surfaces of glass and colloidal silica. Streaming potential and microelectrophoretic mobility measurements were used to monitor the stability of the functionalized surfaces.Hydrolytic breakdown of the surface-to-silane coupling was induced by either successively increasing and decreasing the pH of the solution in contact with the surface, or by aging the derivatised surfaces in aqueous solution over prolonged periods of time. The chemistry of the spacer units between the trialkoxysilane group and the primary amine tip had a major influence on the subsequent hydrolytic stability. Large hydrophobic spacer groups showed small changes in the electrokinetic properties on storage, but large changes when successively titrated with acid and base through the pH range. The behavior observed with small hydrophobic spacer groups was that large changes in electrokinetic properties were obtained on storage and with pH titration.  相似文献   

12.
A superhydrophobic silica film has been fabricated by a facile method, which combines the co-sedimentation of dual-sized polystyrene (PS) spheres and the infiltration of a silica sol. The scanning electron microscopy (SEM) observations indicate that the as-prepared silica surface has a hierarchical micro/nano-structure. The micrometer-sized hollow silica particle with nanometer-sized holes on its surface was created by removing the organic polymer at high temperature. After chemically modified by a layer of dodecafluoroheptyl-methyl-dimethoxysilane (DFMS), the silica film has a water contact angle up to 156.4°, showing excellent superhydrophobic property. The present method may enhance widespread application of superhydrophobic film because of its simplicity and cheapness.  相似文献   

13.
A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.  相似文献   

14.
Organic-inorganic hybrid films were prepared through layer-by-layer (LBL) deposition of poly(allylamine hydrochloride) (PAH) and ZrO(2) nanoparticles coated with poly(acrylic acid) (PAA), allowing facile control of surface roughness and hydrophobicity. Superhydrophobic behavior was observed after deposition of silica nanoparticles and a simple fluorination of the surface. The structure of films was controlled by the number of deposition cycles using PAA-coated 100 nm ZrO(2) nanoparticles, the particle size, and the prelayer with PAH and PAA. The change in the apparent water contact angle of (PAH/PAA-coated ZrO(2)n surfaces without fluorination of the surface agrees with Cassie and Baxter's model for nonwetted surfaces even though the outermost surface itself is hydrophilic. Superhydrophobic surfaces were then successfully developed by the deposition of hydrophilic silica nanoparticles on a 10 bilayer surface of PAH/PAA-coated ZrO(2), and a simple fluorination. Moreover, the chemical stability of the film was greatly increased by heat-induced cross-linking of the film. The incorporation of ZrO(2) nanoparticles in superhydrophobic films promises better mechanical properties than the organic film.  相似文献   

15.
Microchimica Acta - The authors have synthesized a superhydrophobic silica aerogel by using a sol-gel technique. The material is shown to be an efficient sorbent for needle trap microextraction of...  相似文献   

16.
A silica microsphere suspension and a silica sol are employed in a two-step dipping process for the preparation of a superhydrophobic surface. It's not only a facile way to achieve the lotus effect, but can also create a multi-functional surface with different wetabilities, adhesive forces and transparencies.  相似文献   

17.
A series of superhydrophobic surfaces with micro/nanostructure have been successfully achieved by a simple process via the reaction between metal (such as Cd and Zn) salts and alkanethiolates.  相似文献   

18.
In this paper, we report a simple and an inexpensive method for fabricating superhydrophobic/superoleophilic mesh films from microstructured ZnO coatings. The microstructured ZnO coatings, which do not contain any fluorinated compounds, maintain their superhydrophobicity and superoleophilicity after ultraviolet irradiation and display environmental stability. Furthermore, those microstructured ZnO-coated mesh films exhibit good selectivity (even underwater) and excellent recyclability, making them promising candidates for many potential applications, including liquid-liquid separation, water treatment, and liquid transportation.  相似文献   

19.
Breath figure formation was carried out directly on the surface of poly(methylmethacrylate) using a mixture of a good solvent, tetrahydrofuran, and a nonsolvent, water. Direct breath figure formation was coined for this method and a mechanism was proposed to describe the figure formation by the method based on hypothesizes available for the normal breath figure formation. The proposed mechanism is such that the sonication effect, immersion time, and water content on characteristics of the obtained figures can be explained. The figured surface was then made superhydrophobic with a water contact angle of 175° using in situ growing of perfluoro modified silica nanoparticles inside the figure cell by one-pot method. The spherical modified silica nanoparticles were detected being trapped by figure features providing a mechanical entrapment of the low-surface energy nanoparticles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

20.
This investigation describes an optically transparent antistatic film composed of antimony-doped tin oxide (ATO) nanoparticles dispersed in a polymer matrix, with remarkably improved electrical and optical properties. The film is fabricated on the basis of a synergistic interaction between self-assembling nanoparticles and self-organizing matrix materials. The antistatic property of the film is obtained at ATO concentrations above a threshold value. A scaling analysis of the data yields an extremely low critical concentration (0.0020 volume fraction), which is considerably lower than the value predicted by percolation theory. Microscopic observations of the film have revealed a characteristic microstructure: "single-stranded" chainlike (linear form or fibrous) aggregates consisting of ATO nanoparticles and large ATO-depleted areas. The experiment results suggest that the high optical transparency and the low critical concentration are derived from the characteristic microstructures of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号