首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Pressure distribution measurements for a polyisobutylene/decalin solution D1 in the Truncated Cone-and-Plate (TCP) apparatus are combined with elastic hole pressures obtained for the same solution on the Lodge Stressmeter® in order to provide two independent estimates of the second normal-stress difference (N 2). The values ofN 2 from the TCP apparatus, obtained by numerical differentiation of a function of the center-hole pressure and the pressure gradient, are in good agreement with measurements made on the same sample by Tanner et al. with a direct method, namely the Tilted Trough Experiment, and by Christiansen et al. with a method that requires an extrapolation to the pressure at the free surface of coneand-plate rheogoniometer data obtained with flush-mounted pressure transducers. The viscosities from the modified Stressmeter for low shear rates extend over five decades of shear rate, including a zero-shear-rate region, and agree with the data of Christiansen on a torque-driven flow. The Higashitani-Pritchard-Baird-Lodge (HPBL) equation relatingN 1N 2 to the hole pressure gives good agreement with the data over a certain range of shear stress. The Newtonian hole pressures for several liquids at 20 and 46 °C compare well with a finite-element calculation for a two-dimensional Poiseuille flow. When the elastic hole pressures from the Stressmeter are combined with the extrapolated rim pressures from the TCP Apparatus in order to extract the value ofN 2, an agreement betweenN 2 from the center-hole pressure andN 2 from the rim pressure can only be obtained up to a shear rate of about 40 s–1, beyond which the value of –N 2 from the rim pressure diverges abruptly to negative values. It is possible that this constitutes the first quantitative estimate of an edge effect in cone-and-plate rheometry. Alternatively, the elastic hole pressure in cone-and-plate flow is not equivalent to the elastic hole pressure in Poiseuille flow, at least at high shear rates. The data of Christiansen et al. with flush-mounted pressure transducers appear to confirm this second possibility. Finally, a single set of shift factors obeying the Williams, Landel and Ferry equation superposes the viscosity, the first and the second normal-stress difference within experimental scatter, which can be less than 1% for a certain combination of normal-stress differences. The data were recorded at 3, 20, 30, and 46 °C in the shear rate range 1–260 s–1.  相似文献   

2.
The response of a considerable number of solutions of several polymers (PEO, HPAM, PAM) with concentrations of less than 100 ppm in orifice flow has been investigated. It is shown that the excess pressure (difference between the ADPS and the solvent total pressure drop) behaves linearly as a function of a superficial strain rate (ratio between a velocity and a length scale). In rheological terms this behaviour is interpreted as the result of a constant elongational viscosity whose values are two to three orders of magnitude larger than the shear viscosity. A formal approach to this phenomenological interpretation is suggested.  相似文献   

3.
A constitutive equation is proposed, which is constructed using both phenomenological and structural ideas. In this formulation, the kinematics of the fluid is characterized by the deformation rate and a structural vector. The vector follows an evolutionary law which is inspired by known molecular models. The expression for the stress is given by introducing a dissipative term related to the strong hydrodynamic interaction of the distorted molecules and a deformation term for the molecules, as well as by using the second law of thermodynamics.A study of the general properties of the evolutionary equation and its response in a homogeneous two-dimensional flow provides evidence of the performance of the proposed model.  相似文献   

4.
5.
A charged dumbbell model is used to investigate the behavior of dilute polyelectrolyte solutions in a general linear two-dimensional flow. The model studied has a nonlinear spring, conformation dependent friction and a Coulombic repulsive force due to an effective electrostatic charge on the two beads. The relative importance of the electrostatic charge is reflected by an effective charge density parameter,E. Equilibrium properties such as end-to-end distance and intrinsic viscosity are strongly dependent onE. In strong flows, which produce a dramatic increase in the dumbbell dimensions (a coil-stretch transition), the onset behavior is influenced byE. IncreasingE causes the onset velocity gradient to shift to much lower values. Large values ofE change the qualitative behavior to that of rigid (or slightly extensible) macromolecules or fibers. Results are presented for a charged dumbbell at equilibrium, in steady flows, and in transient flows.  相似文献   

6.
P. Schümmer  W. Zang 《Rheologica Acta》1982,21(4-5):517-520
The complex velocity field of an oscillating Couette flow is measured with a Laser-Doppler velocimeter. Different evaluation methods are used for the determination of material functions such as relaxation times and the dynamic complex viscosity.  相似文献   

7.
The viscosity of moderately dilute polymer solutions is formulated on the postulates that in this concentration region is governed by the domain volume per polymer segment and the noddle effect due to entangling chains. The former is treated semi-molecular theoretically, and the latter entirely phenomenologically. All the parameters involved in the theory can be estimated from appropriate dilute solution data as well as the asymptotic molecular-weight dependence of at different concentrations. It is shown that the theory describes almost quantitatively the experimental data obtained by Hamada and Adam and Delsanti for polystyrene in benzene and cyclohexane. Part of these data reveals the breakdown of the semidilute solution approximation used in the theory.  相似文献   

8.
Comparisons are made between experimental rheological data and theoretical predictions obtained from a recently developed algorithm which incorporates three major molecular concepts in a theory for dilute polymer solutions (hydrodynamic interaction, excluded volume and nonlinear springs). These predictions include the radius expansion factor, the apparent chain expansion factor, the molecular weight dependence of the intrinsic viscosity, the frequency dependence of oscillatory flow birefringence, and the shear rate dependence of the intrinsic viscosity. This paper shows that a bead-spring chain model quantitatively predicts these quantities when the relevant molecular concepts are incorporated, suggesting that the rheological properties of dilute polymer solutions can be explained and predicted in terms of these molecular parameters.  相似文献   

9.
We have measured by means of four ultrasonic transducers the fall velocity of a sphere at high Reynolds number range in dilute polyacrylamide solutions which have viscoelastic effects. The polymer solutions were 5, 20 and 50ppm in the concentration. Basset-Bousinessq-Oseen equation for the falling sphere was analyzed numerically on Newtonian fluids in order to compare with the fall velocity of a sphere in the polymer solutions, and the experimental data of the fall velocity in tap water is in agreement with the range of no effect of the test tank wall. In polymer solutions, it was shown that the fall velocity is larger than that in Newtonian fluids within the critical Reynolds number range such that the drag reduction occurs and is smaller than that of Newtonian fluids over the range. The experimental data for the drag reduction ratio of polymer solutions is arranged by Weissenberg number calculating the experimental data of the first normal stress differences. It was shown that the maximum drag reduction ratio in the polymer solutions lies in the range of We=3∼10. Received: 15 October 1997 Accepted: 12 May 1998  相似文献   

10.
Viscoelastic flow of dilute polymer solutions in regularly packed beds   总被引:1,自引:0,他引:1  
R. Haas  F. Durst 《Rheologica Acta》1982,21(4-5):566-571
  相似文献   

11.
The slip hypothesis, based on thermodynamical arguments, has been extended to obtain the flow characteristics of polymer solutions flowing in a nonhomogeneous flow field. An asymptotic analysis, valid for both channel and falling film flows, is presented that predicts the flow enhancement due to polymer migration. Concentration-viscosity coupling is shown to be a critical factor in the hydrodynamic analysis. The analysis, which essentially provides an upper bound on flow enhancement, explicitly accounts for the influence of wall shear stress, initial polymer concentration etc. A comparison with the pertinent experimental data shows reasonable agreement. c concentration - c 0 concentration in shear-free region - c i initial concentration - d rate of deformation tensor - g acceleration due to gravity - g 1 function defined in eq. [13] or [15] - g 2 function defined in eq. [18] or [20] - H half-channel thickness or film thickness - K gas law constant - L length of the channel or film - q flow rate per unit width - q * normalized flow rate - T temperature - v velocity - V mean velocity - y transverse distance - y c location of solvent layer - w s - w /c 0 KT - /t convected derivative - dimensionless cenentration,c/c 0 - c dimensionless interface concentration - w dimensionless wall concentration - relaxation time - µ eff effective viscosity - µ s solvent viscosity - dimensionless transverse distance,y/H - c dimensionless interface location - density - stress tensor - w wall shear stress - c i KT/ w - ns no slip NCL-Communication No. 3155  相似文献   

12.
Expressions for the rheological properties of dilute polymer solutions at low and moderate deformation rates are established through the computation and analysis of exact Zimm's eigenvalues. It is shown that they can be expressed in terms of measurable parameters from intrinsic viscosity data. Under moderate deformation rates one needs to introduce a slippage between the solvent and the smoothed polymer to be able to describe shear-thinning behaviour.  相似文献   

13.
Hydrodynamic interactions on dilute solutions of spherical beads under shear flow are calculated with the method of induced forces. The Navier-Stokes equation is considered in the Stokes approximation. Hydrodynamic interactions cause the drag to be anisotropic in space.Numerical solutions are obtained for the added stress, caused by polymeric molecules in solution in a narrow channel under shear flow. The polymeric molecules are considered as Hookean spring-dumbbells.Slip velocity and the effective viscosity are obtained taking different dumbbells' bead radii. Transversal migration in the channel is obtained for different bead radii.  相似文献   

14.
15.
An effective method has been proposed to estimate the primary normalstress difference versus shear rate curves at temperatures relevant to the processing conditions only from the knowledge of the melt flow index, the molecular-weight distribution and the glass transition temperature of the polymer. The method involves the use of a unified curve obtained by coalescing the elastic response curves of various grades in terms of the modified normal-stress coefficient 1 (MFI)2 and a modified shear rate . Unified curves have been reported for low density polyethylene, high density polyethylene, polypropylene and nylon.Nomenclature C 1 constant in eq. (4) - J e steady state compliance (cm2/dyne) - proportionality constant in eq. (6) - L load (kg) - L 1 load (kg) at ASTM test conditions - L 2 load (kg) at required conditions - MFI melt flow index (gm/10 min) - number average molecular weight - weight average molecular weight - z-average molecular weight - (z+1)-average molecular weight - n slope of the shear stress vs. shear curve on a log-log scale - N 1 primary normal-stress difference (dynes/cm2) - Q molecular weight distribution expressed as - T 1is> temperature (K) at condition 1 - T 2is> temperature (K) at condition 2 - T g glass transition temperature (K) - T s standard reference temperature equal toT g + 50 K - shear rate (s–1) - 0 zero-shear viscosity (poise) - apparent viscosity (poise) - density (g/cm3) - 12 shear stress (dynes/cm2) - 11 22 primary normal-stress difference (dynes/cm2) - 1,0 zero shear rate primary normal-stress coefficient (dynes/cm2 · sec2) - 1 primary normal-stress coefficient (dynes/cm2 · sec2) - 2 secondary normal-stress coefficient (dynes/cm2 · sec2) NCL-Communication No. 3106  相似文献   

16.
In order to examine the flow behavior of polymer solutions through porous media, the measurement of pressure loss and the experiment for flow visualization were carried out with wavy channels as one of the model channels of porous media. The test fluids used are aqueous solutions of polyacrylamide (PAA) with two different concentrations. The occurrence of the excess pressure loss, which was not due to the effect of the centrifugal force, was found for the PAA solutions. The relations between the friction factor ratio and the Deborah number were similar to that obtained for the flow through porous media. Furthermore, the results of the flow visualization suggest that the elongational property of the PAA solutions is connected with the occurrence of the excess pressure loss.  相似文献   

17.
A novel approach is presented to study the benchmark problem of flow around spheres in model dilute solutions of monodisperse samples of atactic polystyrene in di-octyl phthalate. Spheres are held stationary on flexible cantilevers of known spring-constant, k, while the polymer solutions are pumped past at controlled flow rates, allowing access to a wide range of Deborah number. In this way the non-Newtonian forces experienced by the spheres can be measured as a function of Deborah number, while detailed observations and measurements of birefringence are made, enabling assessment of macromolecular strain and orientation. In addition the flow field around a sphere has been measured in an a-PS solution. Experiments have been performed on a single sphere and on two spheres axially aligned in the direction of flow. The extensional flow around the downstream stagnation point of the single sphere is found to play a pivotal role in the development of molecular strain and stress, resulting in flow modification and subsequent non-Newtonian behaviour. The flow birefringence in the wake is found to modify severely the flow around a second, downstream, sphere, affecting the non-Newtonian forces encountered by the second sphere. This provides an explanation for the time interval dependent terminal velocity often observed when two spheres follow the same path through viscoelastic liquids.  相似文献   

18.
We describe experimental results on the extensional viscosity of mobile polymer solutions obtained from two instruments, the first being a commercial Spin Line Rheometer and the second a custom-built lubricated-die Converging Flow Rheometer. The interpretation of data in terms of Trouton ratios is facilitated by a simple analysis for the Generalized Newtonian Fluid model.Agreement between data from the two rheometers is satisfactory and we show that polymer solutions can be either tension stiffening or tension thinning. However, the Trouton ratios in both cases are greater than the Newtonian values and we anticipate that this will always be the case for polymer solutions.Invited paper, presented at the 2nd Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

19.
Viscoelastic effects in non-Newtonian flows through porous media   总被引:3,自引:0,他引:3  
An analysis is presented for the flow of polymer solutions through a tube having a periodically varying diameter; this geometry is often used to represent a porous medium. It is found that if the stretch rate is assumed constant, the stress depends not only upon the Deborah number, but also on the ratio of the maximum to the minimum diameter. If the latter dimensionless group is not too large, no shear thickening is predicted to arise irrespective of the value of the Deborah number. These results explain the observed lack of superposition of curves of the product of the friction factor with the Reynolds number plotted against the Deborah number when different porous media are used. In addition, they also, in a qualitative sense, explain the experimentally observed maxima in the plots of the relative pressure drop as a function of the deformation rate.  相似文献   

20.
Simultaneous measurements of the optical and theological response of solutions of highly fractionated polystyrenes have been made, in-situ, to ascertain the connection between flow-induced structure formation and the phenomenon of shear-thickening. Transient and steady state viscosity, dichroism, birefringence and the associated orientation angles were measured in decalin and bromobenzene in the semi-dilute region using a couette device capable of shear rates up to 8,000 s–1. A one-to-one correlation has been found between the occurrence of maxima in the dichroism and minima in the viscosity. While the size and shape of the shear-thickening structures could not be directly determined, results suggest they are intermediate in size between a cluster of entangled chains and a completely phase-separated liquid. For solutions exhibiting shear-thinning alone, no maximum in dichroism was observed, the signal instead showed a saturation behavior at high shear rates. Birefringence was found to be insensitive to the structure formation and attributable to that of the dissolved chains or entanglement regions. The kinetics of the structuring process leading to shear-thickening are instantaneous and completely reversible and there is a concentration window, above and below which only shear-thinning occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号