首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromium speciation implies the quantitative determination of Cr(III) and Cr(VI). However, the presence of hydrolytic forms of Cr(III) and the instability of tracer level Cr(VI) in acid media complicates this speciation. The present work describes the stability of several monomeric Cr(III) species formed in the acid reduction of51Cr(VI). The distribution of Cr(VI) and Cr(X)n(H2O) 6–n (3–n)+ as a function of time was followed by paired cationic and anionic exchange analyses. The distributions and their time dependences are functions of the initial concentrations of both Cr(VI) and acid. The Cr(III) species eventually level to the hexaaquo form.  相似文献   

2.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

3.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

4.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

5.
A method for speciation studies of chromium in welding fumes is described. Separation of chromium(III) and chromium(VI) in aqueous extracts of welding fumes is obtained by using anion- and cation-exchange resins. Atomic absorption spectrometry is used for quantification. At pH 3–5, there is no loss of chromium(III) as the hydroxide nor reduction of chromium(VI) by iron(II). Two types of welding fumes were studied: for ESAB OK 67–52 and AROSTA 316 L fumes, 57 and 91%, respectively, of the total chromium content was water-soluble; the total chromium contents were 5.9 and 4.4%, respectively. Chromium(III) was not detected in the aqueous extracts of either type of fumes (< 0.010 μg ml-1 of extract).  相似文献   

6.
Summary Simultaneous Determination of Chromium(VI) and Chromium(III) by Flame Atomic Absorption Spectrometry with a Chelating Ion-Exchange Flow Injection System A simple method is described for the simultaneous determination of chromium(VI) and chromium(III) in a flow injection system comprising chelating ion-exchange and flame atomic absorption spectrometry. Sampling rates for 2001 and 1 ml sample volumes were 120 and 60 h–1 (240 and 120 speciations per hour), respectively. Typical relative standard deviations were 0.52% for Cr(VI) (0.50g ml–1 and 0.67% for Cr(III) (0.10,g ml–1) and the corresponding limits of detection were 85 ng ml–1, and 16 ng ml–1, respectively.On leave from University of Belgrade.  相似文献   

7.
A speciation procedure has been established for the flame atomic absorption spectrometric determination of Cr(III) and Cr(VI) based on coprecipitation of Cr(III) by using praseodymium(III) hydroxide (Pr(OH)3) precipitate. In the presented system, Cr(III) was quantitatively (>95%) recovered at the pH range of 10.0?C12.0 on Pr(III) hydroxide, while the recoveries of Cr(VI) were below 10%. The method was applied to the determination of the total chromium after reduction of Cr(VI) to Cr(III) by using hydroxylamine hydrochloride. The concentration of Cr(VI) is calculated by difference of total chromium and Cr(III) levels. The analytical parameters including pH of the aqueous medium, amount of Pr(III), centrifugation speed, sample volume were optimized. The influences of matrix ions were also investigated. The method was validated by the analysis of TMDA 70 fortified lake water certified reference material. The method was applied to the speciation of chromium in water samples.  相似文献   

8.
 An isotope dilution mass spectrometric (IDMS) method, using the formation of positive thermal ions, was developed for Cr(III) and Cr(VI) speciation in aerosol particles. Cr(III) and Cr(VI) spike species, enriched in 53Cr, were applied for the isotope dilution step. After leaching of filter collected aerosol samples by an alkaline solution at pH 13, species separation was carried out by extraction with a liquid anion exchanger in methyl isobutyl ketone. Cr(VI) in the organic phase was re-extracted into an ammoniacal solution and chromium was then isolated from both fractions of species by electrodeposition. Detection limits of 30 pg/m3 for Cr(III) and of 8 pg/m3 for Cr(VI) were achieved in atmospheric aerosols for volumes of air samples of about 120 m3. These low detection limits allowed the determination of chromium species in continental aerosol particles in dependence on different seasons. The Cr(III) /Cr(VI) ratio was always found to be about 0.3 whereas dust from soil erosion, which is probably the primary source of chromium in the atmosphere, showed higher ratios. This indicates that chromium is oxidized in the atmosphere. The accuracy of the method was demonstrated in two interlaboratory comparisons of Cr(VI) determinations in welding dust samples. The IDMS method also contributed to the certification of a corresponding standard reference material organized by the Standard Reference Bureau of the European Union. Chromium speciation, including the determination of elemental chromium Cr(0), was carried out in aerosols of different welding processes for stainless steel. These analyses showed distinct differences in the distribution of chromium species in the welding process and can be used as an exact calibration method for routine methods in this important field of monitoring corresponding working places. Received: 19 August 1996/Revised: 24 September 1996/Accepted: 28 September 1996  相似文献   

9.
The coordination reactions of bromopyrogallol red (BPR) with tri- and hexavalent chromium in the presence of cetyltrimethylammonium bromide (CTAB) have been studied by absorption spectrometry. Results show that the reactions of Cr(VI) and Cr(III) with BPR in the absence or presence of CTAB have different temperature dependences. The reaction mechanism of Cr(VI) is that Cr(VI) is first reduced by BPR to Cr(III) and then the Cr(III) produced reacts with BPR. Based on the study on the coordination reactions and the effects of surfactants upon them, a simple, rapid, sensitive and accurate method for Cr speciation has been developed. Over the range of 0–8 g Cr(VI) or 0–12g Cr(III) per 25ml final volume, the calibration curve is linear with a detection limit of 3.5 × 10–7 mol/1 for Cr(VI) or 4.4 × 10–7 mol/1 for Cr(III).  相似文献   

10.
A method for speciation of Cr(III) and Cr(VI) in real samples has been developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its pyrrolidinedithiocarbamate (APDC) complex by using a column containing Amberlite XAD–2000 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of pH, flow‐rate, adsorption and batch capacity and effect of various metal cations and salt anions on the sorption onto the resin were investigated. The adsorption is quantitative in the pH range of 1.5–2.5, and Cr(VI) ion was desorbed by using H2SO4 in acetone. The recovery of Cr(VI) was 97 ± 4 at a 95% confidence level. The highest preconcentration factor was 80 for a 200 mL sample volume. The adsorption and batch capacity of sorbent were 7.4 and 8.0 mg g?1 Cr(VI), respectively, and loading half time was 5.0 min. The detection limit of Cr(VI) is 0.6 μg/L. The procedure has been applied to the determination and speciation of chromium in stream water, tap water, mineral spring water and spring water. Also, the proposed method was applied to total chromium preconcentration in microwave digested moss and rock samples with satisfactory results. The developed method was validated with CRM‐TMDW‐500 (Certified Reference Material Trace Metals in Drinking Water) and BCR‐CRM 144R s (Certified Reference Material Sewage Sludge, Domestic Origin) and the results obtained were in good agreement with the certified values. The relative standard deviations were below 6%.  相似文献   

11.
In this approach a fluorometric technique has been developed to study chromium speciation, based on optimised conditions using chemometric methods of experimental design and central composite design. Full and fractional factorial design was used for evaluation of the effective factors in determination of Cr(VI) by fluorometric using Rhodamine-6G in the presence of H2SO4. Theory and methodology of a central composite design as a chemometric method for the optimisation of analytical procedures were developed in this approach. It was found that the analytical performance for measurement at the point of optimum in this technique is superior and more accurate than that of one variable at a time. Cr(VI) and Cr(III) were measured in a wastewater sample using the proposed technique. The results confirm the selective determination and speciation of Cr(VI)/Cr(III).  相似文献   

12.
Summary The catalytic adsorptive stripping voltammetric determination of chromium using diethylenetriaminepentaacetic acid (DTPA) is only possible when chromium(III) is preliminarily oxidized to chromium(VI) which can be accomplished by UV-irradiation of the oxygen saturated solution at pH 6.0–7.0. A chromium(III)-chromium(VI) speciation can be performed in the range 10–10 mol/l upto 10–6 mol/l employing the coprecipitation of chromium(III) with Al(OH)3. The interference of other metal ions was also studied.  相似文献   

13.
The simultaneous determination of U(VI), Pu(VI), Pu(V) in 0.5–4.0 M NaOH has been elaborated by means of classical and differential pulse voltamperometry. U(VI) is determined with a dropping mercury electrode (DME) at the half-wave potential of E1/2=–0.89 V vs. Ag/AgCl reference electrode due to reduction to U(V). The limiting current or peak heights are proportional to uranium(VI) concentration in the range of 1.3.10–7–3·10–4 M U(VI). Deviation from proportionality is observed for higher concentrations due to polymerization of uranates. Pu(VI) and Pu(V) are determined with a platinum rotating electrode at E1/2=–0.02 V due to the reaction Pu(VI)+e»Pu(V) and with DME at E1/2=–1.1 V due to the reduction to Pu(III). The limiting currents of both Pu(VI) and Pu(V) are proportional to their concentrations in the range of 4·10–6–1.2·10–3 M Pu. The determination of U(VI), Pu(VI), Pu(V) is not interfered by the presence of the following salts: 2M NaNO3, 2M NaNO2, 1.5M NaAlO2, 0.5M NaF and ions of Mo(VI), W(VI), V(V), Cu(II). The presence of CrO 4 2– and FeO 2 ions disturbs the determination of U(VI) in 1–4M NaOH, however, contribution of the reaction Fe(III)+e»Fe(II) to uranium reduction peak can be calculated from the height of the second peak Fe(II)+2 e»Fe(0).  相似文献   

14.
A sensitive and selective method has been developed to determine Cr(III) and total Cr in natural water samples by ICP-AES with a Cr(III)-imprinted aminopropyl-functionalised silica gel adsorbent. The Cr(III)-imprinted and non-imprinted adsorbent were prepared by an easy one-step reaction with a surface imprinting technique. Their maximum static adsorption capacities for Cr(III) were 11.12 mg g?1 and 3.81 mg g?1, respectively. The relative selectivity factors (α r) for Cr(III)/Co(II), Cr(III)/Au(III), Cr(III)/Ni(II), Cr(III)/Cu(II), Cr(III)/Zn(II), and Cr(III)/Cr(VI), were 377, 21.4, 15.4, 27.7, 26.4, and 31.9, respectively. Under the optimal conditions, Cr(III) can be absorbed quantitatively, but Cr(VI) was not retained. Total chromium was obtained after reducing Cr(VI) to Cr(III) with hydroxyammonium chloride. The detection limit (3σ) for Cr(III) was 0.11 ng mL?1. The relative standard deviation was 1.2%. The proposed method has been validated by analysing two certified reference materials and successfully applied to the determination and speciation of chromium in natural water samples with satisfactory results.  相似文献   

15.
Summary 2-Oximinodimedone dithiosemicarbazone reacts with Cr(VI) in strongly acid medium. The orange colour obtained has been used to propose a spectrophotometric method of Cr(VI) determination in the concentration range 0.40–9.5g ml–1 (=5600 mole–1-cm–1 at 485 nm). The stoichiometry of the reaction is 32 (reagentCr(VI)) which is in accordance with the oxidation reaction of the reagent by Cr(VI). The method has been applied to the determination of Cr(VI) and Fe(III) in ceramic materials.
Eine Studie zur Cr(VI)-2-oximinodimedondithiosemicarbazon-Reaktion und die simultane Bestimmung von Cr(VI) und Fe(III)
Zusammenfassung 2-Oximinodimedonedithiosemicarbazon reagiert in stark saurem Milieu mit Cr(VI). Die orange Farbe kann im Konzentrationsbereich von 0.4–9,5g/ml zur spektrophotometrischen Cr(VI)-Bestimmung verwendet werden (=5600 1 mol–1cm–1bei 485 nm). Die Stöchiometrie der Reaktion ist 32 (Reagens: Cr(VI)) und entspricht der Oxidation des Reagens durch Cr(VI). Die Methode wurde zur Bestimmung von Cr(VI) und Fe(III) in keramischen Materialien eingesetzt.
  相似文献   

16.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

17.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

18.
We report an in-situ harvesting technique of electron-hole (e-h+) carriers (e.g., the defect electrons in the O2 − matrix and the self-trapped holes, Si–O–Si) generated during sol-gel processing. In the absence of redox species, the e-h+ centers created during room temperature sol-gel polycondensation steps are quickly annihilated and deactivated. However, when Cr(VI) ions are pre-dispersed in sol-gel solutions, the ejected electrons can be effectively harvested for the reduction of Cr(VI) to Cr(III) ions which are encapsulated in the silica gel matrix. The Cr(VI) ions, the possible intermediate oxidation states of chromium ions such as Cr(V) and/or Cr(IV), and the stable Cr(III)-hole complexes in the sol-gel matrix are investigated using uv-visible spectroscopy, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. The chemical stability of Cr(VI) and Cr(III) in sol-gel networks is compared to that in aqueous solutions. The results indicate that the utilization of e-h+ carriers generated in the sol-gel can be an effective and selective means for investigating the redox process of Cr(VI) and encapsulating the stable Cr(III) ions in the confined sol-gel environments.  相似文献   

19.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

20.
Summary Several different configurations for simultaneous and sequential photometric speciation of Cr(VI) and Cr(III) based on the reversed flow injection analysis and completely continuous modes are proposed in this paper. The determination of these species at theg · ml–1 level is achieved with sampling frequencies between 30 and 100 h–1 and an r.s.d. of less than ±1% for simultaneous methods and of less than ±3% for the sequential method. The proposed methods are suitable for chromium speciation in waters. A simulation of the continuous monitoring of Cr(VI) and periodical of Cr(III) in natural and waste waters has been performed. The most frequent interferents in these types of samples have been investigated.
Simultane und sequentielle Bestimmung von Chrom(VI) und Chrom(III) durch unsegmentierte Durchflußmethoden
Zusammenfassung Verschiedene Arten der simultanen und sequentiellen photometrischen Cr(III)- und Cr(VI)-Bestimmung nach der Technik der reversed-flow Injektionsanalyse werden beschrieben. Die relative Standardabweichung für die Bestimmung dieser Chromspezies im g/ml-Bereich bei einer Probenfrequenz von 30 bis 100 je Stunde beträgt weniger als +1% für die Simultan- und weniger als +3% für die sequentiellen Methoden. Eine simulierte kontinuerliche Überwachung von Chrom(VI) sowie eine periodische von Chrom(III) in natürlichem Wasser und Abwasser wird beschrieben. Die häufigsten Störungen werden diskutiert.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号