首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Total syntheses of the microtubule stabilizing antitumor drugs epothilone B and D are described, starting from optically pure (S)-malic acid and methyl (R)-3-hydroxy-2-methylpropionate. The synthesis is highly convergent by coupling the three fragments C1-C6 (fragment D), C7-C10 (fragment C), and C11-C21 (fragment B). Key steps are two stereoselective Wittig type olefinations to generate the 12,13- and 16,17-double bonds, an enantioselective Mukaiyama aldol addition to synthesize fragment D, and a sulfone anion allyl iodide alkylation to connect fragments B and C. Finally fragment D was attached to the B + C fragment via aldol addition.  相似文献   

2.
We report the details of the first total synthesis of erythromycin B using two different strategies for the end game. The first of these follows a classical approach in which the desosamine and cladinose residues are sequentially appended to a macrocyclic lactone, which was formed by cyclization of a seco acid derivative, to give a bis-glycosylated macrolide intermediate that is converted into erythromycin B. The second strategy features an abiotic approach in which a seco acid bearing a desosamine residue is cyclized to give a monoglycosylated macrocyclic lactone that is then transformed into erythromycin B via a sequence of steps involving refunctionalizations and a glycosylation to introduce the cladinose moiety. Attempts to prepare a bis-glycosylated seco acid by de novo synthesis were unsuccessful. The syntheses of the key seco acid intermediates feature the oxidative transformation of a furan containing C(3)-C(10) to provide a dioxabicyclo[3.3.1]nonenone that served as a template on which to create the stereocenters at C(6) and C(8). A stereoselective aldol reaction was used to establish the C(11)-C(15) segment, and a stereoselective crotylation was implemented to introduce the propionate subunit comprising C(1)-C(2).  相似文献   

3.
The efficient synthesis of the C(19)-C(26) subunit of amphidinolide B(1) and B(2) has been completed using a boron-mediated aldol reaction. The synthesis of the C(19)-C(26) subunit of amphidinolide B(3) has also been accomplished through an unexpected anti aldol reaction using a titanium-mediated process. In addition, the first reported examples of a stereochemical discrepancy between the Evans' boron-mediated oxazolidinone and the Crimmins' titanium-mediated oxazolidinethione aldol reactions are disclosed. A working hypothesis is put forth to explain the results.  相似文献   

4.
The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) in 25 linear steps from chiral methylene pyran 13 is described. The key steps involved an inverse electron demand hetero-Diels-Alder reaction between dienophile 13 and diene 12 to construct the 6,6-spiroketal 11 which upon oxidation with dimethyldioxirane and acid catalyzed rearrangement gave the 5,6-spiroketal aldehyde 9. Lithium acetylide addition followed by oxidation/reduction and protective group manipulation provided the reveromycin B spiroketal core 8 which was converted into the reveromycin A (1) derivative 6 in order to confirm the stereochemistry of the spiroketal segment. Introduction of the C1-C10 side chain began with sequential Wittig reactions to form the C8-C9 and C7-C6 bonds, and a tin mediated asymmetric aldol reaction installed the C4 and C5 stereocenters. The final key steps to the target molecule 2 involved a Stille coupling to introduce the C21-C22 bond, succinoylation, selective deprotection, oxidation, and Wittig condensation to form the final C2-C3 bond. Deprotection was effected by TBAF in DMF to afford reveromycin B (2) in 72% yield.  相似文献   

5.
The molecular structures of two carbaboranes, closo-2,3-C(2)B(9)H(11) and nido-2,9-C(2)B(9)H(13), were determined experimentally for the first time using gas-phase electron diffraction (GED). For closo-2,3-C(2)B(9)H(11), a model with C(2)(v)() symmetry was refined to give C-B bond distances ranging 158.3-167.0 pm and B-B distances ranging 177.4-200.0 pm. The structure of nido-2,9-C(2)B(9)H(13) was refined using a model with C(s)() symmetry to give C-B bond lengths ranging 160.3-171.9 pm and B-B lengths ranging 173.0-196.1 pm. Ab initio computations (up to MP2/6-311+G) were also carried out on these and the related nido-7,8-C(2)B(9)H(13), which was not sufficiently stable to allow determination of its molecular structure by GED.  相似文献   

6.
[reaction: see text] An asymmetric synthesis of a C(7)-C(20) synthon of amphidinolide B is described. The synthesis entails the construction of C(7)-C(13) and C(14)-C(20) fragments and makes extensive use of catalytic asymmetric bond constructions to establish the requisite stereochemical relationships. Fragment coupling proceeds by Suzuki cross-coupling and installs the trisubstituted diene unit that is among amphidinolide B's defining structural features.  相似文献   

7.
Our studies toward the total synthesis of the reveromycin family of natural products are described herein. Our synthetic approach is efficient, stereocontrolled, and convergent and has resulted in the first synthesis of reveromycin B (4) and C19-epi-reveromycin B (55). Key steps of this successful strategy include: a modified Negishi coupling (construction of C7-C8 bond) and a Kishi-Nozaki reaction (construction of C19-C20 bond), which were employed in the attachment of the target side chains. The key building blocks for the total synthesis were thus defined as vinyl iodide 6, alkyne 7, and alkyne 8. Our synthesis illustrates the utility of the modified Negishi coupling for the construction of complex dienes, confirms the proposed stereochemistry of reveromycins and paves the way for the preparation of designed analogues for biological study.  相似文献   

8.
A convergent total synthesis of the cytotoxic natural product cruentaren B is completed in 26 steps (longest linear sequence) with an overall yield of 7.1%. For the construction of the C1-C11 benzolactone fragment of the molecule, the key steps used were O-methylation, using a Mitsunobu reaction, a Stille coupling method to construct the C7-C8 bond, and a Brown's asymmetric crotylboration reaction for the direct enantioselective installation of the two chiral centers present in this fragment. For diastereoselective installation of the chiral centers in the C12-C20 polyketide fragment, an Evans syn aldol reaction on a chiral aldehyde, derived from methyl (R)-3-hydroxyl-2-methylpropionate, and subsequently a Mukaiyama aldol reaction were employed. For the construction of the C21-C28 tail, a "non-Evans" syn aldol reaction was used. The three fragments were coupled by an SN2 reaction and a Wittig olefination reaction followed by standard functional group manipulations to furnish the target molecule.  相似文献   

9.
The asymmetric synthesis of the macrolide antibiotics (+)-rutamycin B (1) and (+)-oligomycin C (2) is described. The approach relied on the synthesis and coupling of the individual spiroketal fragments 3a and 3b with the C1-C17 polyproprionate fragment 4. The preparation of the spiroketal fragments was achieved using chiral (E)-crotylsilane bond construction methodology, which allowed the introduction of the stereogenic centers prior to spiroketalization. The present work details the synthesis of the C19-C28 and C29-C34 subunits as well as their convergent assembly through an alkylation reaction of the lithiated N,N-dimethylhydrazones 6 and 8 to afford the individual linear spiroketal intermediates 5a and 5b, respectively. After functional group adjustment, these advanced intermediates were cyclized to their respective spiroketal-coupling partners 40 and 41. The requisite polypropionate fragment was assembled in a convergent manner using asymmetric crotylation methodology for the introduction of six of the nine-stereogenic centers. The use of three consecutive crotylation reactions was used for the construction of the C3-C12 subunit 32. A Mukaiyama-type aldol reaction of 35 with the chiral alpha-methyl aldehyde 39 was used for the introduction of the C12-C13 stereocenters. This anti aldol finished the construction of the C3-C17 advanced intermediate 36. A two-carbon homologation completed the construction of the polypropionate fragment 38. The completion of the synthesis of the two macrolide antibiotics was accomplished by the union of two principal fragments that was achieved with an intermolecular palladium-(0) catalyzed cross-coupling reaction between the terminal vinylstannanes of the individual spiroketals 3a and 3b and the polypropionate fragment 4. The individual carboxylic acids 46 and 47 were cyclized to their respective macrocyclic lactones 48 and 49 under Yamaguchi reaction conditions. Deprotection of these macrolides completed the synthesis of the rutamycin B and oligomycin C.  相似文献   

10.
The syntheses of new cyano-substituted derivatives of arachno-6,8-C(2)B(7)H(13) have been achieved through the addition reactions of the arachno-6,8-C(2)B(7)H(12)(-) (1-) anion with cyano-activated olefins. The reaction of PSH+1- with tetracyanoethylene (TCNE) yielded the unusual bridging compound PSH(+)endo-6-endo-7-[micro(2)-(C(CN)(2))(2)]-arachno-6,8-C(2)B(7)H(12)(-) (PSH+2-)) resulting from cycloaddition of the TCNE at the C6-B7 edge of the anion. Consistent with its hypho skeletal electron count, an X-ray crystallographic study and DFT/GIAO calculations confirm 2(-) has a more open structure than 1-. The reaction of 1- with acrylonitrile resulted in the formation of endo-6-(NCCH(2)CH(2))-arachno-6,8-C(2)B(7)H(11)(-) (3-), which, upon acidification, afforded endo-6-(NCCH(2)CH(2))-arachno-6,8-C(2)B(7)H(12) (3) in high yield. X-ray crystallographic and DFT/GIAO studies established that the cyanoethyl fragment in 3 is substituted at the endo-position of the C6 cage-carbon. Heating 3 in THF at 50 degrees C or in toluene at 110 degrees C resulted in the quantitative isomerization of the cyanoethyl-substituent from the endo- to the exo-position at C6 to yield exo-6-(NCCH(2)CH(2))-arachno-6,8-C(2)B(7)H(12) (4). This is the first example of an endo to exo isomerization to be observed at a cage-carbon of a carborane. While heating 3 resulted in isomerization to 4, heating 3- in the presence of a small amount of 3 yielded the new ethylene-bridged 10-vertex tricarbaborane micro(6,9)-(CH(2)CH(2))-arachno-5,6,9-C(3)B(7)H(11) (5) resulting from reduction of the 3- pendant nitrile group, followed by deammination and carbon insertion.  相似文献   

11.
A convergent, total synthesis of epothilones B (2) and D (4) is described. The key steps are Normant coupling to establish the desired (Z)-stereochemistry at C12-C13, Wadsworth-Emmons olefination of methyl ketone 28 with the phosphonate ester 8, diastereoselective aldol condensation of aldehyde 5 with the enolate of keto acid derivatives to form the C6-C7 bond, selective deprotection of acid 52, and macrolactonization.  相似文献   

12.
[structure: see text] A synthesis of the C(15)-C(30) fragment of Dolabelides A and B has been achieved. The recently developed asymmetric silane alcoholysis and tandem silylformylation-crotylsilylation reactions were used as the key steps to establish the C(23)-C(27) 1,5-syn-diol. In addition, the flexibility of this methodology has been demonstrated with an efficient synthesis of the C(24)-C(25) trisubstituted olefin.  相似文献   

13.
Fuwa H  Noji S  Sasaki M 《Organic letters》2010,12(22):5354-5357
A highly convergent synthesis of the C9-C28 spiroacetal subunit of didemnaketal B has been accomplished. Assembly of the C9-C15 alkylborate and C16-C21 enol phosphate by means of Suzuki-Miyaura coupling and acid-catalyzed cyclization of the derived dihydroxy enol ether enabled a rapid and efficient construction of the spiroacetal subunit. The C22-C28 side chain was incorporated via Nozaki-Hiyama-Kishi coupling to complete the synthesis.  相似文献   

14.
A convergent synthesis of pteridic acids A and B, epimeric spiroacetal polyketides with potent plant growth promoter properties, is described. The use of boron aldol methodology efficiently achieved the stereocontrolled construction of advanced C1-C11 and C12-C16 subunits, which were coupled to generate a linear (Z)-enone precursor that underwent spiroacetalization with HF·pyridine, providing pteridic acids A and B after saponification.  相似文献   

15.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

16.
利用密度泛函方法在B3LYP/6-31G(d)水平上对1,2-C2B10H12的两种异腈类衍生物的结构特性进行了研究. 结果表明, 1,2-C2B10H11NC的活性较强; 1,2-C2B10H11NC和1,2-C2B10H11CH2NC可以通过结构中的C4原子与过渡金属原子成键而形成碳硼烷异腈金属配合物. 1,2-C2B10H11NC和1,2-C2B10H11CH2NC的分子极性均比1,2-C2B10H12的弱, 这不利于它们在硼中子捕获疗法中的应用.  相似文献   

17.
Fragment C-D, the C(21)-C(37) unit of the aglycone of amphotericin B, has been synthesized.  相似文献   

18.
Studies leading to a total synthesis of epothilones B and D are described. The overall synthetic plan was based on late-stage fragment assembly of two segments representing C(1)-C(9) and C(10)-C(21) of the structure. The C(1)-C(9) fragment was prepared by elaboration of commercially available (2R)-3-hydroxy-2-methylpropanoate at both ends of the three-carbon unit. Introduction of carbons 1-4 containing the gem-dimethyl unit was achieved in a convergent manner using a diastereoselective addition of a stannane equivalent of a beta-keto ester dianion. An enantioselective addition of such a stannane equivalent for a beta-keto ester dianion was also used to fashion one version of the C(10)-C(21) subunit; however, the fragment assembly (using bimolecular esterification followed by ring-closing metathesis) with this subunit failed. Therefore, fragment assembly was achieved using a Wittig reaction; this was followed by macrolactonization to close the macrocycle. The C(10)-C(21) subunit needed for this approach was prepared in an efficient manner using the Corey-Kim reaction as a key element. Other key reactions in the synthesis include a stereoselective SmI(2) reduction of a beta-hydroxy ketone and a critical opening of a valerolactone with aniline which required extensive investigation.  相似文献   

19.
Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise the NSn distance (2.861(3)[Angstrom]). The tin environment is distorted trigonal bipyramidal with axial N and Me. The gold derivative 1-R-2-AuPPh(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and AuCl(PPh(3)), reveals no NAu interaction in its crystal structure.  相似文献   

20.
Müller S  Mayer T  Sasse F  Maier ME 《Organic letters》2011,13(15):3940-3943
Starting from (R)-(-)-linalool (6), terminus differentiation and chain extension via aldol type reactions led to ketophosphonate 16 (C1-C8 building block). In a Horner-Wadsworth-Emmons reaction, 16 reacted with aldehyde 22, which contained the vicinal anti-Me-OH pattern and a vinyl iodide function, to provide the C1-C13 part of pladienolide B. After Shiina macrolactonization, reduction of the enone 26 gave the core structure 27. A Stille cross-coupling of vinyl iodide 27 with tributylphenylstannane eventually furnished analogue 30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号