首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weak consonants (e.g., stops) are more susceptible to noise than vowels, owing partially to their lower intensity. This raises the question whether hearing-impaired (HI) listeners are able to perceive (and utilize effectively) the high-frequency cues present in consonants. To answer this question, HI listeners were presented with clean (noise absent) weak consonants in otherwise noise-corrupted sentences. Results indicated that HI listeners received significant benefit in intelligibility (4 dB decrease in speech reception threshold) when they had access to clean consonant information. At extremely low signal-to-noise ratio (SNR) levels, however, HI listeners received only 64% of the benefit obtained by normal-hearing listeners. This lack of equitable benefit was investigated in Experiment 2 by testing the hypothesis that the high-frequency cues present in consonants were not audible to HI listeners. This was tested by selectively amplifying the noisy consonants while leaving the noisy sonorant sounds (e.g., vowels) unaltered. Listening tests indicated small (~10%), but statistically significant, improvements in intelligibility at low SNR conditions when the consonants were amplified in the high-frequency region. Selective consonant amplification provided reliable low-frequency acoustic landmarks that in turn facilitated a better lexical segmentation of the speech stream and contributed to the small improvement in intelligibility.  相似文献   

2.
Pitch, timbre, and/or timing cues may be used to stream and segregate competing musical melodies and instruments. In this study, melodic contour identification was measured in cochlear implant (CI) and normal-hearing (NH) listeners, with and without a competing masker; timing, pitch, and timbre cues were varied between the masker and target contour. NH performance was near-perfect across different conditions. CI performance was significantly poorer than that of NH listeners. While some CI subjects were able to use or combine timing, pitch and/or timbre cues, most were not, reflecting poor segregation due to poor spectral resolution.  相似文献   

3.
The phonetic identification ability of an individual (SS) who exhibits the best, or equal to the best, speech understanding of patients using the Symbion four-channel cochlear implant is described. It has been found that SS: (1) can use aspects of signal duration to form categories that are isomorphic with the phonetic categories established by listeners with normal auditory function; (2) can combine temporal and spectral cues in a normal fashion to form categories; (3) can use aspects of fricative noises to form categories that correspond to normal phonetic categories; (4) uses information from both F1 and higher formants in vowel identification; and (5) appears to identify stop consonant place of articulation on the basis of information provided by the center frequency of the burst and by the abruptness of frequency change following signal onset. SS has difficulty identifying stop consonants from the information provided by formant transitions and cannot differentially identify signals that have identical F1's and relatively low-frequency F2's. SS's performance suggests that simple speech processing strategies (filtering of the signal into four bands) and monopolar electrode design are viable options in the design of cochlear prostheses.  相似文献   

4.
In a multiple observation, sample discrimination experiment normal-hearing (NH) and hearing-impaired (HI) listeners heard two multitone complexes each consisting of six simultaneous tones with nominal frequencies spaced evenly on an ERB(N) logarithmic scale between 257 and 6930 Hz. On every trial, the frequency of each tone was sampled from a normal distribution centered near its nominal frequency. In one interval of a 2IFC task, all tones were sampled from distributions lower in mean frequency and in the other interval from distributions higher in mean frequency. Listeners had to identify the latter interval. Decision weights were obtained from multiple regression analysis of the between- interval frequency differences for each tone and listeners' responses. Frequency difference limens (an index of sensorineural resolution) and decision weights for each tone were used to predict the sensitivity of different decision-theoretic models. Results indicate that low-frequency tones were given much greater perceptual weight than high-frequency tones by both groups of listeners. This tendency increased as hearing loss increased and as sensorineural resolution decreased, resulting in significantly less efficient weighting strategies for the HI listeners. Overall, results indicate that HI listeners integrated frequency information less optimally than NH listeners, even after accounting for differences in sensorineural resolution.  相似文献   

5.
These experiments examined how high presentation levels influence speech recognition for high- and low-frequency stimuli in noise. Normally hearing (NH) and hearing-impaired (HI) listeners were tested. In Experiment 1, high- and low-frequency bandwidths yielding 70%-correct word recognition in quiet were determined at levels associated with broadband speech at 75 dB SPL. In Experiment 2, broadband and band-limited sentences (based on passbands measured in Experiment 1) were presented at this level in speech-shaped noise filtered to the same frequency bandwidths as targets. Noise levels were adjusted to produce approximately 30%-correct word recognition. Frequency bandwidths and signal-to-noise ratios supporting criterion performance in Experiment 2 were tested at 75, 87.5, and 100 dB SPL in Experiment 3. Performance tended to decrease as levels increased. For NH listeners, this "rollover" effect was greater for high-frequency and broadband materials than for low-frequency stimuli. For HI listeners, the 75- to 87.5-dB increase improved signal audibility for high-frequency stimuli and rollover was not observed. However, the 87.5- to 100-dB increase produced qualitatively similar results for both groups: scores decreased most for high-frequency stimuli and least for low-frequency materials. Predictions of speech intelligibility by quantitative methods such as the Speech Intelligibility Index may be improved if rollover effects are modeled as frequency dependent.  相似文献   

6.
Formant dynamics in vowel nuclei contribute to vowel classification in English. This study examined listeners' ability to discriminate dynamic second formant transitions in synthetic high front vowels. Acoustic measurements were made from the nuclei (steady state and 20% and 80% of vowel duration) for the vowels /i, I, e, epsilon, ae/ spoken by a female in /bVd/ context. Three synthesis parameters were selected to yield twelve discrimination conditions: initial frequency value for F2 (2525, 2272, or 2068 Hz), slope direction (rising or falling), and duration (110 or 165 ms). F1 frequency was roved. In the standard stimuli, F0 and F1-F4 were steady state. In the comparison stimuli only F2 frequency varied linearly to reach a final frequency. Five listeners were tested under adaptive tracking to estimate the threshold for frequency extent, the minimal detectable difference in frequency between the initial and final F2 values, called deltaF extent. Analysis showed that initial F2 frequency and direction of movement for some F2 frequencies contributed to significant differences in deltaF extent. Results suggested that listeners attended to differences in the stimulus property of frequency extent (hertz), not formant slope (hertz/second). Formant extent thresholds were at least four times smaller than extents measured in the natural speech tokens, and 18 times smaller than for the diphthongized vowel /e/.  相似文献   

7.
8.
Three experiments examined the ability of listeners to identify steady-state synthetic vowel-like sounds presented concurrently in pairs to the same ear. Experiment 1 confirmed earlier reports that listeners identify the constituents of such pairs more accurately when they differ in fundamental frequency (f0) by about a half semitone or more, compared to the condition where they have the same f0. When the constituents have different f0's, corresponding harmonics of the two vowels are misaligned in frequency and corresponding pitch periods are asynchronous in time. These differences provide cues that might aid identification. Experiments 2 and 3 determined whether listeners can use these cues, divorced from a difference in f0, to improve their accuracy of identification. Harmonic misalignment was beneficial when the constituents had an f0 of 200 Hz so that the harmonics of each constituent were well separated in frequency. Pitch-period asynchrony was beneficial when the constituents had an f0 of 50 Hz so that the onsets of the pitch periods of each constituent were well separated in time. Neither cue was beneficial when both constituents had an f0 of 100 Hz. It is unlikely, therefore, that either cue contributed to the improvement in performance found in Experiment 1 where the constituents were given different f0's close to 100 Hz. Rather, it is argued that performance improved in Experiment 1 primarily because the two f0's specified two pitches that could be used to segregate the contributions of each vowel in the composite waveform.  相似文献   

9.
The speech understanding of persons with sloping high-frequency (HF) hearing impairment (HI) was compared to normal hearing (NH) controls and previous research on persons with "flat" losses [Hornsby and Ricketts (2003). J. Acoust. Soc. Am. 113, 1706-1717] to examine how hearing loss configuration affects the contribution of speech information in various frequency regions. Speech understanding was assessed at multiple low- and high-pass filter cutoff frequencies. Crossover frequencies, defined as the cutoff frequencies at which low- and high-pass filtering yielded equivalent performance, were significantly lower for the sloping HI, compared to NH, group suggesting that HF HI limits the utility of HF speech information. Speech intelligibility index calculations suggest this limited utility was not due simply to reduced audibility but also to the negative effects of high presentation levels and a poorer-than-normal use of speech information in the frequency region with the greatest hearing loss (the HF regions). This deficit was comparable, however, to that seen in low-frequency regions of persons with similar HF thresholds and "flat" hearing losses suggesting that sensorineural HI results in a "uniform," rather than frequency-specific, deficit in speech understanding, at least for persons with HF thresholds up to 60-80 dB HL.  相似文献   

10.
Although some cochlear implant (CI) listeners can show good word recognition accuracy, it is not clear how they perceive and use the various acoustic cues that contribute to phonetic perceptions. In this study, the use of acoustic cues was assessed for normal-hearing (NH) listeners in optimal and spectrally degraded conditions, and also for CI listeners. Two experiments tested the tense/lax vowel contrast (varying in formant structure, vowel-inherent spectral change, and vowel duration) and the word-final fricative voicing contrast (varying in F1 transition, vowel duration, consonant duration, and consonant voicing). Identification results were modeled using mixed-effects logistic regression. These experiments suggested that under spectrally-degraded conditions, NH listeners decrease their use of formant cues and increase their use of durational cues. Compared to NH listeners, CI listeners showed decreased use of spectral cues like formant structure and formant change and consonant voicing, and showed greater use of durational cues (especially for the fricative contrast). The results suggest that although NH and CI listeners may show similar accuracy on basic tests of word, phoneme or feature recognition, they may be using different perceptual strategies in the process.  相似文献   

11.
Speech perception in the presence of another competing voice is one of the most challenging tasks for cochlear implant users. Several studies have shown that (1) the fundamental frequency (F0) is a useful cue for segregating competing speech sounds and (2) the F0 is better represented by the temporal fine structure than by the temporal envelope. However, current cochlear implant speech processing algorithms emphasize temporal envelope information and discard the temporal fine structure. In this study, speech recognition was measured as a function of the F0 separation of the target and competing sentence in normal-hearing and cochlear implant listeners. For the normal-hearing listeners, the combined sentences were processed through either a standard implant simulation or a new algorithm which additionally extracts a slowed-down version of the temporal fine structure (called Frequency-Amplitude-Modulation-Encoding). The results showed no benefit of increasing F0 separation for the cochlear implant or simulation groups. In contrast, the new algorithm resulted in gradual improvements with increasing F0 separation, similar to that found with unprocessed sentences. These results emphasize the importance of temporal fine structure for speech perception and demonstrate a potential remedy for difficulty in the perceptual segregation of competing speech sounds.  相似文献   

12.
The purpose of this study is to specify the contribution of certain frequency regions to consonant place perception for normal-hearing listeners and listeners with high-frequency hearing loss, and to characterize the differences in stop-consonant place perception among these listeners. Stop-consonant recognition and error patterns were examined at various speech-presentation levels and under conditions of low- and high-pass filtering. Subjects included 18 normal-hearing listeners and a homogeneous group of 10 young, hearing-impaired individuals with high-frequency sensorineural hearing loss. Differential filtering effects on consonant place perception were consistent with the spectral composition of acoustic cues. Differences in consonant recognition and error patterns between normal-hearing and hearing-impaired listeners were observed when the stimulus bandwidth included regions of threshold elevation for the hearing-impaired listeners. Thus place-perception differences among listeners are, for the most part, associated with stimulus bandwidths corresponding to regions of hearing loss.  相似文献   

13.
F1 structure provides information for final-consonant voicing   总被引:1,自引:0,他引:1  
Previous research has shown that F1 offset frequencies are generally lower for vowels preceding voiced consonants than for vowels preceding voiceless consonants. Furthermore, it has been shown that listeners use these differences in offset frequency in making judgments about final-consonant voicing. A recent production study [W. Summers, J. Acoust. Soc. Am. 82, 847-863 (1987)] reported that F1 frequency differences due to postvocalic voicing are not limited to the final transition or offset region of the preceding vowel. Vowels preceding voiced consonants showed lower F1 onset frequencies and lower F1 steady-state frequencies than vowels preceding voiceless consonants. The present study examined whether F1 frequency differences in the initial transition and steady-state regions of preceding vowels affect final-consonant voicing judgments in perception. The results suggest that F1 frequency differences in these early portions of preceding vowels do, in fact, influence listeners' judgments of postvocalic consonantal voicing.  相似文献   

14.
Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1-2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognition.  相似文献   

15.
The goal of this study was to measure the ability of adult hearing-impaired listeners to discriminate formant frequency for vowels in isolation, syllables, and sentences. Vowel formant discrimination for F1 and F2 for the vowels /I epsilon ae / was measured. Four experimental factors were manipulated including linguistic context (isolated vowels, syllables, and sentences), signal level (70 and 95 dB SPL), formant frequency, and cognitive load. A complex identification task was added to the formant discrimination task only for sentences to assess effects of cognitive load. Results showed significant elevation in formant thresholds as formant frequency and linguistic context increased. Higher signal level also elevated formant thresholds primarily for F2. However, no effect of the additional identification task on the formant discrimination was observed. In comparable conditions, these hearing-impaired listeners had elevated thresholds for formant discrimination compared to young normal-hearing listeners primarily for F2. Altogether, poorer performance for formant discrimination for these adult hearing-impaired listeners was mainly caused by hearing loss rather than cognitive difficulty for tasks implemented in this study.  相似文献   

16.
This study investigated the benefits of adding unprocessed low-frequency information to acoustic simulations of cochlear-implant processing in normal-hearing listeners. Implant processing was simulated using an eight-channel noise-excited envelope vocoder, and low-frequency information was added by replacing the lower frequency channels of the processor with a low-pass-filtered version of the original stimulus. Experiment 1 measured sentence-level speech reception as a function of target-to-masker ratio, with either steady-state speech-shaped noise or single-talker maskers. Experiment 2 measured listeners' ability to identify two vowels presented simultaneously, as a function of the F0 difference between the two vowels. In both experiments low-frequency information was added below either 300 or 600 Hz. The introduction of the additional low-frequency information led to substantial and significant improvements in performance in both experiments, with a greater improvement observed for the higher (600 Hz) than for the lower (300 Hz) cutoff frequency. However, performance never equaled performance in the unprocessed conditions. The results confirm other recent demonstrations that added low-frequency information can provide significant benefits in intelligibility, which may at least in part be attributed to improvements in F0 representation. The findings provide further support for efforts to make use of residual acoustic hearing in cochlear-implant users.  相似文献   

17.
The present study systematically manipulated three acoustic cues--fundamental frequency (f0), amplitude envelope, and duration--to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone.  相似文献   

18.
Hearing-impaired (HI) listeners often show poorer performance on psychoacoustic tasks than do normal-hearing (NH) listeners. Although some such deficits may reflect changes in suprathreshold sound processing, others may be due to stimulus audibility and the elevated absolute thresholds associated with hearing loss. Masking noise can be used to raise the thresholds of NH to equal the thresholds in quiet of HI listeners. However, such noise may have other effects, including changing peripheral response characteristics, such as the compressive input-output function of the basilar membrane in the normal cochlea. This study estimated compression behaviorally across a range of background noise levels in NH listeners at a 4 kHz signal frequency, using a growth of forward masking paradigm. For signals 5 dB or more above threshold in noise, no significant effect of broadband noise level was found on estimates of compression. This finding suggests that broadband noise does not significantly alter the compressive response of the basilar membrane to sounds that are presented well above their threshold in the noise. Similarities between the performance of HI listeners and NH listeners in threshold-equalizing noise are therefore unlikely to be due to a linearization of basilar-membrane responses to suprathreshold stimuli in the NH listeners.  相似文献   

19.
Previous work has demonstrated that normal-hearing individuals use fine-grained phonetic variation, such as formant movement and duration, when recognizing English vowels. The present study investigated whether these cues are used by adult postlingually deafened cochlear implant users, and normal-hearing individuals listening to noise-vocoder simulations of cochlear implant processing. In Experiment 1, subjects gave forced-choice identification judgments for recordings of vowels that were signal processed to remove formant movement and/or equate vowel duration. In Experiment 2, a goodness-optimization procedure was used to create perceptual vowel space maps (i.e., best exemplars within a vowel quadrilateral) that included F1, F2, formant movement, and duration. The results demonstrated that both cochlear implant users and normal-hearing individuals use formant movement and duration cues when recognizing English vowels. Moreover, both listener groups used these cues to the same extent, suggesting that postlingually deafened cochlear implant users have category representations for vowels that are similar to those of normal-hearing individuals.  相似文献   

20.
The purpose of this study was to determine whether the perceived sensory dissonance of pairs of pure tones (PT dyads) or pairs of harmonic complex tones (HC dyads) is altered due to sensorineural hearing loss. Four normal-hearing (NH) and four hearing-impaired (HI) listeners judged the sensory dissonance of PT dyads geometrically centered at 500 and 2000 Hz, and of HC dyads with fundamental frequencies geometrically centered at 500 Hz. The frequency separation of the members of the dyads varied from 0 Hz to just over an octave. In addition, frequency selectivity was assessed at 500 and 2000 Hz for each listener. Maximum dissonance was perceived at frequency separations smaller than the auditory filter bandwidth for both groups of listners, but maximum dissonance for HI listeners occurred at a greater proportion of their bandwidths at 500 Hz than at 2000 Hz. Further, their auditory filter bandwidths at 500 Hz were significantly wider than those of the NH listeners. For both the PT and HC dyads, curves displaying dissonance as a function of frequency separation were more compressed for the HI listeners, possibly reflecting less contrast between their perceptions of consonance and dissonance compared with the NH listeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号