首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[structure: see text] Lanthionine, a thioether analogue of cystine, is a key component of the lantibiotics, a family of modified peptides bearing multiple thioether bridges resulting from posttranslational modifications between side chains. It is also used as a conformational constraint in medicinally active peptides. We have explored two synthetic routes to give lanthionine, orthogonally protected with Alloc/allyl and Fmoc groups. One route utilized a carbamate-protected iodoalanine that yielded a mixture of diastereoisomers, and one utilized a trityl-protected iodoalanine, formed via a Mitsunobu reaction, that gave the single desired lanthionine, in complete regio- and diastereoselectivity. We then used this orthogonally protected lanthionine in the solid-phase synthesis of an analogue of a fragment of nisin containing its ring C. The chemoselective deprotection of the allyl and Alloc groups of the incorporated lanthionine unit was followed by regio- and stereoselective cyclization on resin to give the desired lanthionine-bridged peptide.  相似文献   

2.
The asymmetric sulfa-Michael additions of appropriately protected L- and D-cysteine derivatives to new chiral dehydroamino acid derivatives have been developed as key steps in the synthesis of biologically important cysteine derivatives, such as lanthionine (Lan) and β-methyllanthionine (MeLan), which are unusual bis-α-amino acids found in the emerging lantibiotics such as nisin.  相似文献   

3.
Regio- and stereoselective aziridine ring opening with oxygen nucleophiles derived from serine and threonine provides a route to stereochemically pure 4-oxa-2,6-diaminopimelic acid (oxa-DAP) and its methyl-substituted derivatives. Oxa-DAP is a substrate of DAP epimerase, a key enzyme for biosynthesis of l-lysine and formation of peptidoglycan precursors. Orthogonally protected analogues of lanthionine and beta-methyllanthionine wherein oxygen replaces sulfur were prepared that could be used for solid-supported peptide synthesis to make oxa derivatives of lantibiotics.  相似文献   

4.
The lantibiotics are a class of highly posttranslationally modified small peptide antibiotics containing numerous lanthionine and dehydroamino acid residues. We have prepared peptides containing multiple dehydroamino acids and cysteine residues in order to probe the biomimetic synthesis of the lantibiotics from their precursor peptides. A novel synthetic methodology was developed to allow the synthesis of multiple dehydroamino acid containing peptides. Cyclisations were rapid, quantitative and regiospecific. Remarkably the peptide sequences alone appear to contain sufficient information to direct a series of stereo- and regiospecific ring closures. Thus both the two linear peptides for the B and E-rings closed stereoselectively. In the case of the A-ring precursor peptide which contained two dehydroamino acids, cyclisation was again totally regioselective, although not totally stereoselective.  相似文献   

5.
Lantibiotic peptides are potent antimicrobial compounds produced by Gram-positive bacteria. They can be used in food preservation, and some also show potential for clinical applications. Unfortunately, some of these peptides can be susceptible to inactivation by oxidation of the sulfur-containing amino acid lanthionine, limiting their use. Here we describe the synthesis and testing of diaminopimelate analogues of the lantibiotic lactocin S. These analogues were designed to improve the oxidative stability of the peptide by replacing the sulfur in lanthionine with a methylene unit. Lanthionine was systematically replaced with diaminopimelate during solid-phase peptide synthesis to produce several analogues. One analogue, A-DAP lactocin S, was found to retain full biological activity in addition to displaying increased stability. This is the first time a synthetic lanthionine ring analogue of a lantibiotic has retained natural activity levels. This methodology is potentially very promising for use in producing more stable, medically relevant lantibiotics.  相似文献   

6.
Lacticin 3147 is a lantibiotic with seven lanthionine bridges across its two component peptides, Ltnα and Ltnβ. Although it has been proposed that the eponymous lanthionine and (β-methyl)lanthionine (Lan and meLan) bridges present in lantibiotics make an important contribution to protecting the peptides from thermal or proteolytic degradation, few studies have investigated this link. We have generated a bank of bioengineered derivatives of lacticin 3147, in which selected bridges were removed or converted between Lan and meLan, which were exposed to high temperature or proteolytic enzymes. Although switching Lan and meLan bridges has variable consequences, it was consistently observed that an intact N-terminal lanthionine bridge (Ring A) confers Ltnα with enhanced resistance to thermal and proteolytic degradation.  相似文献   

7.
A solid-phase Mitsunobu reaction between a resin-bound 1-thiosugar and an N-Fmoc protected amino alcohol was successfully employed for thio-linked glycopeptide synthesis. Facile cleavage and deprotection in one step afforded the target glycopeptide in good yield and purity.  相似文献   

8.
The synthesis of two new bicyclic nucleoside analogues is reported. These compounds are iso-homonucleoside and are synthesised through a 1,3-dipolar cycloaddition of an enantiopure cyclic nitrone to protected allyl acohol and subsequent introduction of thymine by a Mitsunobu reaction.  相似文献   

9.
Protected α-alkyl lanthionine derivatives were synthesized in five steps starting from a known phenyloxazoline precursor. This approach involved the synthesis of a family of substituted cyclic sulfamidates and their regioselective opening by nucleophilic attack with a protected cysteine. This efficient multistep strategy affords various α-alkylated lanthionine derivatives in high yields.  相似文献   

10.
[reaction: see text] Lantibiotics are a class of lanthionine (and/or beta-methyllanthionine)-containing peptides with antibioitic activity against Gram-positive bacteria. As part of our research effort directed toward the synthesis and mechanistic study of the lantibiotic peptide mersacidin (1), we report stereoselective syntheses of orthogonally protected beta-methylcysteine (beta-MeCys) and beta-methyllanthionine (beta-MeLan), two key nonnatural amino acid components of the mersacidin architecture.  相似文献   

11.
Ji H  Jing Q  Huang J  Silverman RB 《Tetrahedron》2012,68(5):1359-1366
2-Aminopyridinomethyl pyrrolidines represent a class of highly potent and selective neuronal nitric oxide synthase inhibitors. Conditions for a Mitsunobu reaction of a naphthol and a hindered secondary alcohol were optimized to give good to excellent yields. A key step in the synthesis of these inhibitors is the deprotection of the benzyl group from the N-Boc and N-Bn double protected 2-aminopyridine ring at a late stage of the synthesis, which has been proven difficult in our previous syntheses. Acetic acid was found to facilitate the N-Bn deprotection.  相似文献   

12.
Lantibiotics are antimicrobial peptides produced by bacteria. Some are employed for food preservation, whereas others have therapeutic potential due to their activity against organisms resistant to current antibiotics. They are ribosomally synthesized and posttranslationally modified by dehydration of serine and threonine residues followed by attack of thiols of cysteines to form monosulfide lanthionine and methyllanthionine rings, respectively. Chemical synthesis of peptide analogues is a powerful method to verify stereochemistry and access structure-activity relationships. However, solid supported synthesis of lantibiotics has been difficult due to problems in generating lanthionines and methyllanthionines with orthogonal protection and good stereochemical control. We report the solid-phase syntheses of both peptides of a two-component lantibiotic, lacticin 3147. Both successive and interlocking ring systems were synthesized on-resin, thereby providing a general methodology for this family of natural products.  相似文献   

13.
The unique antibacterial properties and structural complexity of the lantibiotics has stimulated considerable interest in the development of methodology to synthesise these peptides. One of the most challenging issues has been the synthesis of polycyclic peptides with multiple thioether bridges between side-chains, which are a characteristic feature of the lantibiotics. In this perspective, the different approaches to this problem, including solution-phase synthesis, solid-phase synthesis, biomimetic approaches and biotransformation strategies, are reviewed, highlighting the advances resulting from each of these approaches.  相似文献   

14.
The efficient chemoenzymatic synthesis of enantiopure 1,3-difunctionalized indane derivatives has been achieved. The corresponding cis and trans N-protected amino alcohols were successfully resolved by acetylation using lipase B, which is a biocatalyst isolated from Candida antarctica. All the possible isomers were obtained in very good chemical yields and ee values (>99 %). The utility of these compounds was subsequently shown by the preparation of orthogonally protected cis- and trans-indane-1,3-diamine using a Mitsunobu reaction. Both enantiomers of the trans isomer and a desymmetrized cis diastereomer were prepared in enantiopure form. Complete inversion of configuration during the Mitsunobu reaction was demonstrated by a combination of NMR techniques and molecular modeling. The utility and versatility of the strategy was also demonstrated by the selective deprotection of each nitrogen atom under mild reaction conditions.  相似文献   

15.
[structure: see text] An improved synthesis of protected cis- and trans-3-azido-L-proline and cis- and trans-4-azido-L- and -D-proline is reported. These compounds have been synthesized from the corresponding hydroxyproline precursors using diphenylphosphoryl azide under Mitsunobu conditions. Short, highly efficient syntheses of these precursors are described, based on a new lactone-opening reaction and p-nitrobenzoate hydrolysis under very mild conditions.  相似文献   

16.
Alkyl aryl ether formation is a frequently employed reaction in organic synthesis. Ullmann condensation is an alternative method to the widely used Mitsunobu reaction and is very useful in situations where application of the Mitsunobu reaction is limited. By application of this reaction to solid-phase synthesis of a series of alkyl aryl ethers, reaction conditions (catalyst, solvent, temperature, time, etc.) for a sterically hindered class of alcohols were investigated and optimized. A range of aryl halides was used to explore the scope of the reaction in solid phase.  相似文献   

17.
The 4'-epimer of 2-fluoronoraristeromycin was synthesized by employing bis-t-butoxycarbonyl (Boc) protected 2-fluoroadenine as a superior substrate for the Mitsunobu reaction with the appropriate cyclopentenol. Unlike the unsubstituted counterpart 2-fluoroadenine, this substrate is completely soluble in THF and resulted in a very good yield in the Mitsunobu coupling reaction as well as subsequent steps.  相似文献   

18.
Hovinen J  Hakala H 《Organic letters》2001,3(16):2473-2476
[reaction: see text] Novel nucleosidic phosphoramidite blocks were synthesized by a Mitsunobu reaction between 2'-deoxy-5'-O-(4,4'-dimethoxytrityl)uridine and a primary alcohol containing a conjugate group in its structure (a protected functional group, an organic dye, or a precursor of a lanthanide(III) chelate) followed by phosphitylation. They were used in machine-assisted DNA synthesis in the standard manner. A slightly modified deprotection procedure was used for the preparation of oligonucleotide conjugates tethered to lanthanide(III) chelates. For the latter application one non-nucleosidic block was also synthesized.  相似文献   

19.
Lu Z  Weber R  Twieg RJ 《Tetrahedron letters》2006,47(40):7213-7217
A group of dicyanodihydrofuran (DCDHF) fluorophores with thiol-reactive maleimide functionality has been synthesized. One of the methods involves aromatic nucleophilic substitution reaction between an arylfluoride containing DCDHF and an amine containing protected maleimide. An alternative and generally useful method involves combination of the Mitsunobu reaction of a DCDHF-OH with a furan or 2-methylfuran protected maleimide and then subsequent retro Diels-Alder reaction.  相似文献   

20.
Lantibiotics are polycyclic peptide antibiotics containing intrachain sulfide bridges, formed from the thioether groups of the amino acids lanthionine and β-methyllanthionine. They also contain α,β-unsaturated amino acids such as didehydroalanine and didehydroaminobutyric acid. A knowledge of the lantibiotic biosynthetic steps and the enzymes involved makes possible a gene technological construction of analogous highly modified polypeptides. To the family of lantibiotics belong nisin, an important food preservative, epidermin, a highly specific therapeutic agent against acne, a series of enzyme inhibitors, as well as immunologically interesting active peptides. Lantibiotics are produced by ribosomal synthesis, starting from inactive precursor proteins (prelantibiotics). The latter are post-translationally converted into the active peptide antibiotics through enzymic modifications. The modifying enzymes effect dehydrations at the serine and threonine residues and stereospecific additions of the cysteine thiol groups to the resulting α,β-unsaturated double bonds, which lead to the formation of several sulfide bridges. Upon subsequent proteolytic cleavage of the leader peptide, the biologically active lantibiotic is formed. Conformational analyses of the lantibiotics, as well as of their prepeptides, enables one to obtain information about the mechanism and steps of the biosynthesis. Antibodies against synthetic prepeptide sequences, and modern instrumental methods for the analysis of peptides, allow structural elucidation of the biosynthetic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号