首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.  相似文献   

2.
In situ ellipsometry was used to study layer-by-layer film formation on hydrophilic and hydrophobized silica surfaces by alternating sequential adsorption of human mucin MUC5B and cationic proteins lysozyme, lactoferrin, lactoperoxidase or histatin 5, respectively. The stability of the multilayers was investigated by addition of sodium dodecyl sulfate solution (SDS). Atomic force microscopy was employed to investigate morphological structures on the surfaces during the layer-by-layer film build-up. It was clearly shown that, on both hydrophilic and hydrophobized silica, only MUC5B and lactoperoxidase showed the ability for multilayer formation, resulting in an approximately linear increase in adsorbed amount and film thickness with each deposition cycle. The net increase in amounts per cycle was larger on the hydrophilic silica. Further, MUC5B needs to be adsorbed first on the hydrophilic substrates to obtain this fast build-up behavior. Generally, addition of SDS solution showed that a large fraction of the adsorbed film could be desorbed. However, films on the hydrophobized silica were more resistant to surfactant elution. In conclusion, MUC5B-cationic protein multilayers can be formed on hydrophilic and hydrophobized silica, depending on the choice of the cationic protein as well as in which order the build-up is started on hydrophilic silica. Additionally, SDS disrupts the layer-by-layer film formed by MUC5B and lactoperoxidase.  相似文献   

3.
The effect of surface roughness on the quartz crystal microbalance with dissipation monitoring (QCM-D) response was investigated with emphasis on determining the amount of trapped water. Surfaces with different nanoroughnesses were prepared on silica by self-assembly of cationic surfactants with different packing parameters. We used surfactants with quaternary ammonium bromide headgroups: the double-chained didodecyltrimethylammonium bromide (C12)2DAB (DDAB), the single-chained hexadecyltrimethylammonium bromide C16TAB (CTAB), and dodecyltrimethyl-ammonium bromide C12TAB (DTAB). The amount of trapped water was obtained from the difference between the mass sensed by QCM-D and the adsorbed amount detected by optical reflectometry. The amount of water, which is sensed by QCM-D, was found to increase with the nanoroughness of the adsorbed layer. The water sensed by QCM-D cannot be assigned primarily to hydration water, because it differs substantially for adsorbed surfactant layers with similar headgroups but with different nanoscale topographies.  相似文献   

4.
The alternate adsorption of polycation poly(allylamine hydrochloride)(PAH) and the sodium salt of the polymeric dye poly(1-[ p-(3'-carboxy-4'-hydroxyphenylazo)benzenesulfonamido]-1,2-ethandiyl)(PCBS) on quartz crystals coated with silica was studied to understand the structural properties and adsorption kinetics of these films using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D), absorbance, and ellipsometry measurements. In-situ deposition of the polycation PAH on QCM crystals was monitored, followed by rinsing with water and then deposition of the polyanion PCBS. The effects of polymer concentration and pH on film structure, composition and adsorption kinetics were probed. The polymers were adsorbed at neutral pH conditions and at elevated pH conditions where PAH was essentially uncharged to obtain much thicker films. The change in the resonant frequency, Deltaf, of the QCM-D showed a linear decrease with the number of bilayers, a finding consistent with absorbance and ellipsometric thickness measurements which showed linear growth of film thickness. By using the Delta f ratios of PCBS to PAH, the molar ratios of repeat units of PCBS to PAH in the bilayer films as determined by QCM-D were approximately 1:1 at polyelectrolyte concentrations 5-10 mM repeat unit, indicating complete dissociation of the ionic groups. The frequency and dissipation data from the QCM-D experiments were analyzed with the Voigt model to estimate the thickness of the hydrated films which were then compared with thicknesses of dry films measured by ellipsometry. This led to estimates of the water content of the films to be approximately 45 wt %. In addition to the QCM-D, some films were also characterized by a QCM which measures only the first harmonic without dissipation monitoring. For the deposition conditions studied, the deposited mass values measured by the QCM's first harmonic were similar to the results obtained using higher harmonics from QCM-D, indicating that the self-assembled polyelectrolyte films were rigid.  相似文献   

5.
The temperature-dependent properties of pre-adsorbed layers of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) were investigated on silica and hydrophobized silica surfaces. Three different techniques, quartz crystal microbalance with dissipation monitoring, ellipsometry, and atomic force microscopy imaging, were used, providing complementary and concise information on the structure, mass and viscoelastic properties of the polymer layer. Adsorption was conducted at 25 °C, followed by a rinsing step. The properties of such pre-adsorbed layers were determined as a function of temperature in the range 25 °C to 50 °C. It was found that the layers became more compact with increasing temperature and that this effect was reversible, when decreasing the temperature. The compaction was more prominent for MC, as shown in the AFM images and in the thickness data derived from the QCM analysis. This is consistent with the fact that the phase transition temperature is lower, in the vicinity of 50 °C, for MC than for HPMC. The water content of the adsorbed layers was found to be high, even at the highest temperature, 50 °C, explored in this investigation.  相似文献   

6.
Adsorption of the temperature-responsive polymer hydroxypropylmethylcellulose (HPMC) from an aqueous solution onto hydrophobized silica was followed well above the bulk instability temperature (T(2)) in temperature cycle experiments. Two complementary techniques, QCM-D and ellipsometry, were utilized simultaneously to probe the same substrate immersed in polymer solution. The interfacial processes were correlated with changes in polymer aggregation and viscosity of polymer solutions, as monitored by light scattering and rheological measurements. The simultaneous use of ellipsometry and QCM-D, and the possibility to follow layer properties up to 80 °C, well above the T(2) temperature, are both novel developments. A moderate increase in adsorbed amount with temperature was found below T(2), whereas a significant increase in the adsorbed mass and changes in layer properties were observed around the T(2) temperature where the bulk viscosity increases significantly. Thus, there is a clear correlation between transition temperatures in the adsorbed layer and in bulk solution, and we discuss this in relation to a newly proposed model that considers competition between aggregation and adsorption/deposition. A much larger temperature response above the T(2) temperature was found for adsorbed layers of HPMC than for layers of methyl cellulose. Possible reasons for this are discussed.  相似文献   

7.
Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.  相似文献   

8.
A quartz crystal microbalance with dissipation (QCM-D) was used to measure the adsorption from aqueous solutions of CTAB (cationic) and C(12)E(6) (nonionic) surfactants on gold and silica surfaces. QCM-D allows for the determination of adsorption isotherms and also the monitoring of the dynamics of adsorption in real time. By considering the atomic-scale roughness of the solid surfaces and the surface area per head group at the air/water interface, our experiments indicate that at bulk concentrations above the critical micelle concentration adsorbed C(12)E(6) forms a monolayer-like structure on both surfaces and CTAB yields a bilayer-like structure. Although our measurements do not allow us to discriminate between the morphology of the aggregates (i.e., between flat monolayers, hemicylinders, or hemispheres in the case of C(12)E(6) and between flat bilayers, cylinders, or spheres in the case of CTAB), these results are particularly significant when compared to recent QCM-D data reported by Macakova et al. (Macakova, L.; Blomberg, E.; Claesson, P. M. Langmuir 2007, 23, 12436). These authors reported that QCM-D overestimates the amount of CTAB adsorbed on silica by as much as 30-40% as a result of entrapped water. Our analysis suggests that the effect of entrapped solvent is not as important as previously assumed and, in fact, QCM-D may not overestimate the amount of CTAB adsorbed when roughness is considered. Results for the kinetics of adsorption suggest that the aggregate structure as well as whether micelles are present may influence the adsorption mechanism. We discuss our results in the perspective of molecular theories for both the equilibrium and kinetics of surfactant adsorption.  相似文献   

9.
The salivary protein statherin is known to adsorb selectively onto hydroxyapatite (HA), which constitutes the main mineral of the tooth enamel. This adsorption is believed to be crucial for its function as an inhibitor of primary (spontaneous) and secondary (crystal growth) precipitation of calcium phosphate salts present in saliva. A fragment corresponding to the first 21 N-terminus amino acids of statherin (StN21) was previously found to reduce the rate of demineralization of HA. Therefore, the interfacial properties of this peptide and statherin onto silica, hydrophobized silica and HA discs was studied by in situ ellipsometry. Their reversibility induced by dilution and elutability induced by buffer and sodium dodecyl sulfate (SDS) was also determined. The results revealed that statherin adsorbed at a greater extent onto the HA as compared to StN21, suggesting that the hydrogen bonding between the uncharged polar residues at the C-terminal region of statherin and HA contributes to its adsorption. However, on both silica surfaces the peptide adsorption appeared to proceed in a similar way. Onto the hydrophobized silica the adsorption of both peptides was suggested to occur either via multilayer formation or adsorption of aggregates from solution, while onto the hydrophilic silica adsorption of peptide aggregates from solution was the suggested mechanism. Further, both peptides were observed to be strongly adsorbed onto HA, even after SDS treatment, in comparison to the layers adsorbed onto hydrophobized silica. Both peptide layers were found to be weakly adsorbed onto the hydrophilic silica surface as they were totally removed by buffer dilution.  相似文献   

10.
Adsorption behavior and water content of adsorbed layers of four dispersants for aqueous ceramic processing were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) on alumina surfaces. The dispersants were a poly(acrylic acid), a lignosulfonate, and two hydrophilic comb copolymers with nonionic polyoxyethylene chains of different molecular weights. A Voigt model was applied to analyze the viscoelastic behavior of the adsorbed dispersant layers. The results from QCM-D were compared with viscoelastic properties determined by in situ dynamic rheology measurements of highly concentrated alumina suspensions during slip casting. The QCM-D results showed that both the poly(acrylic acid) and the lignosulfonate adsorbed in low amounts and in a flat conformation, which generated thin, highly rigid layers less than 1 nm thick. The water content of these layers was found to be around 30% for the lignosulfonate and 35% for the poly(acrylic acid). High casting rate and strength in terms of storage modulus were observed in the final consolidate of the suspensions with the two polyelectrolytes. In contrast, the high molecular weight comb copolymer adsorbed in a less elastic layer with a thickness of about 6 nm, which is enough to provide steric stabilization. The viscous behavior of this layer was attributed to high water content, which was calculated to be around 90%. Such a water-rich layer gives a lubrication effect, which allows for reorientation of particles during the consolidation process, resulting in a high final strength of the ceramic material. During consolidation, the suspension showed a slow casting rate, most likely due to rearrangement facilitated by the lubricating layer. The short-chain comb copolymer adsorbed in a 1.5 nm thick, rigid layer and gave low final strength to the consolidated suspension. It is likely that the poor consolidation behavior is caused by flocculation due to insufficient stabilization of the dispersion.  相似文献   

11.
The complex mechanisms of protein adsorption at the solid-liquid interface is of great importance in many research areas, including protein purification, biocompatibility of medical implants, biosensing, and biofouling. The protein adsorption process depends crucially on both the nanoscale chemistry and topography of the interface. Here, we investigate the adsorption of the cell-binding protein fibronectin on flat and nanometer scale rough tantalum oxide surfaces using ellipsometry and quartz crystal microbalance with dissipation (QCM-D). On the flat tantalum oxide surfaces, the interfacial protein spreading causes an increase in the rigidity and a decrease in the thickness of the adsorbed fibronectin layer with decreasing bulk protein concentration. For the tantalum oxide surfaces with well-controlled, stochastic nanometer scale roughness, similar concentration effects are observed for the rigidity of the fibronectin layer and saturated fibronectin uptake. However, we find that the nanorough tantalum oxide surfaces promote additional protein conformational changes, an effect especially apparent from the QCM-D signals, interpreted as an additional stiffening of the formed fibronectin layers.  相似文献   

12.
DNA compaction by alkyltrimethylammonium surfactants at hydrophobized silica surfaces and the effect of the counterion, as well as the hydrocarbon chain length, was investigated by in situ null-ellipsometry. In addition, DNA compaction in the presence of a gemini surfactant, hexyl-alpha,omega-bis(dodecyldimethylammonium bromide), was studied. The type of cationic amphiphile used was found not to have a pronounced effect on the mixed DNA-cationic surfactant adsorbed layer thickness, although the surface concentration excess for the mixed layers seemed to follow the same trend as that for DNA-free surfactant layers. Interestingly, it was also found that the stability of the mixed adsorbed layer largely depends on the cationic surfactant used.  相似文献   

13.
Bovine submaxillary mucin (BSM) and chitosan were used to build layer-by-layer structures on solid substrates. The build-up was monitored using in situ ellipsometry to obtain time resolved values of the thickness and adsorbed amount. Additionally surface morphology during build-up was studied by atomic force microscopy (AFM). It was found that the adsorbed amount of the film increases approximately linearly with each deposition cycle on hydrophobized silica whereas construction on silica was found not to be possible at the experimental conditions used. We conclude that sufficient amount of the first mucin layer is crucial for the subsequent multilayer formation. The complex build-up kinetics on hydrophobized silica is characterized by adsorption and redissolution processes and the overall growth is the sum of both processes. AFM imaging on hydrophobized silica also confirmed the presence of redissolution processes and chitosan addition led to a reduction both in the number of surface aggregates and in the roughness of the surface. The present work also shows that by adjusting the relative concentrations of the polyelectrolytes it is possible to change the growth rate considerably. The final structures after deposition of 8 bilayers were found to have a high content of water and film stability test revealed that a substantial amount dissolves when increasing electrolyte concentration or pH of the ambient solution. Human mucin from saliva (MUC5B) was also used to create multilayers with chitosan on hydrophobized silica and it was revealed that no redissolution appears to be present in this system.  相似文献   

14.
A quartz crystal microbalance with dissipation (QCM-D) has been used to determine the adsorption rate of ampicillin-resistant linear and supercoiled plasmid DNA onto a silica surface coated with natural organic matter (NOM). The structure of the resulting adsorbed DNA layer was determined by analyzing the viscoelastic properties of the adsorbed DNA layers as they formed and were then exposed to solutions of different ionic composition. The QCM-D data were complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The obtained results suggest that electrostatic interactions control the adsorption and structural changes of the adsorbed plasmid DNA on the NOM-coated silica surface. The adsorption of DNA molecules to the NOM layer took place at moderately high monovalent (sodium) electrolyte concentrations. A sharp decrease in solution ionic strength did not result in the release of the adsorbed DNA, indicating that DNA adsorption on the NOM-coated silica surface is irreversible under the studied solution conditions. However, the decrease in electrolyte concentration influenced the structure of the adsorbed layer, causing the adsorbed DNA to adopt a less compact conformation. The linear and supercoiled DNA had similar adsorption rates, but the linear DNA formed a thicker and less compact adsorbed layer than the supercoiled DNA.  相似文献   

15.
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The influence of both calcium chloride (CaCl(2)) and sodium chloride (NaCl) on CMC adsorption was examined. The QCM-D results demonstrated that CaCl(2) (divalent cation) caused significantly greater CMC adsorption onto regenerated cellulose surfaces than NaCl (monovalent cation) at the same ionic strength. The CMC layers adsorbed onto regenerated cellulose surfaces from CaCl(2) solutions exhibited greater stability upon exposure to flowing water than layers adsorbed from NaCl solutions. Both QCM-D and SPR results showed that CMC adsorption onto regenerated cellulose surfaces from CaCl(2) solutions increased with increasing CaCl(2) concentration up to the solubility limit (10 mM). Voigt-based viscoelastic modeling of the QCM-D data indicated that the CMC layers adsorbed onto regenerated cellulose surfaces had shear viscosities of η(f) ≈ 10(-3) N·s·m(-2) and elastic shear moduli of μ(f) ≈ 10(5) N·m(-2). Furthermore, the combination of SPR spectroscopy and QCM-D showed that the CMC layers contained 90-95% water. Adsorption isotherms for CMCs in CaCl(2) solutions were also obtained from QCM-D and were fit by Freundlich isotherms. This study demonstrated that CMC adsorption from CaCl(2) solutions is useful for the modification of cellulose surfaces.  相似文献   

16.
The adsorption of proteins at material surfaces is important in applications such as biomaterials, drug delivery, and diagnostics. The interaction of cells with artificial surfaces is mediated through adsorbed proteins, where the type of protein, amount, orientation, and conformation are of consequence for the cell response. Laminin, an important cell adhesive protein that is central in developmental biology, is studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR) to characterize the adsorption of laminin on surfaces of different surface chemistries. The combination of these two techniques allows for the determination of the thickness and effective density of the protein layer as well as the adsorbed mass and viscoelastic properties. We also evaluate the capacity of QCM-D to be used as a quantitative technique on a nanostructured surface, where protein is adsorbed specifically in a nanopattern exploiting PLL-g-PEG as a protein-resistant background. We show that laminin forms a highly hydrated protein layer with different characteristics depending on the underlying substrate. Using a combination of QCM-D and atomic force microscopy (AFM) data from nanostructured surfaces, we model laminin and antibody binding to nanometer-scale patches. A higher amount of laminin was found to adsorb in a thicker layer of a lower effective density in nanopatches compared to equivalent homogeneous surfaces. These results suggest that modeling of QCM-D data of soft viscoelastic layers arranged in nanopatterns may be applied where an independent measure of the "dry" mass is known.  相似文献   

17.
The adsorption and formation of DNA and cationic surfactant complexes at the silica-aqueous interface have been studied by ellipsometry. The interaction between the DNA-surfactant complexes at the mica-aqueous interface has been determined by the interferometric surface force apparatus. Adsorption was as expected not observed on negatively charged hydrophilic surfaces for DNA and when DNA-cationic surfactant complexes were negatively charged. However, adsorption was observed when there is an excess of cationic surfactant, just below the point of phase separation. The adsorption process requires hours to reach steady state. The adsorbed layer thickness is large at low surface coverage but becomes more compact and thinner at high coverage. A long-range repulsive force was observed between adsorbed layers of DNA-cationic surfactant complexes, which was suggested to be of both electrostatic and steric origin. The forces were found to be dependent on the equilibration time and the experimental pathway.  相似文献   

18.
The adsorption of a nonionic surfactant at a silica/room-temperature ionic liquid interface has been characterized on the basis of analytical data obtained through a combination of surface force measurements, in situ soft-contact atomic force microscope (AFM) images, and quartz crystal microbalance with dissipation monitoring (QCM-D) data. The surfactant employed in this study is a kind of phytosterol ethoxylate (BPS-20), and the ionic liquid selected here is aprotic 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI). This ionic liquid spontaneously forms solvation layers on silica, being composed of an Emim(+) cation layer and EmimTFSI ion pair layers. The addition of BPS-20 disrupts these solvation layers and suggests a surfactant layer adsorbed at the interface. This is the first report demonstrating the adsorption of nonionic surfactants at the solid/aprotic ionic liquid interface.  相似文献   

19.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

20.
The adsorption of the monomeric/gemini surfactant mixtures at the silica/aqueous solution interface has been characterized on the basis of quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) data. The gemini surfactant employed in this study was cationic 1,2-bis(dodecyldimethylammonio)ethane dibromide (12-2-12). This surfactant was mixed with monomeric surfactants (dodecyltrimethylammonium bromide (DTAB), hexadecyltrimethylammonium bromide (HTAB), and octaoxyethylenedodecyl ether (C(12)EO(8))) in the presence of an added electrolyte (NaBr). The key finding in our current study is that the addition of the gemini surfactant (12-2-12) makes significant impact on the adsorption properties even when the mole fraction of 12-2-12 is quite low in the surfactant mixtures. This is suggested by the experimental results that (i) the QCM-D adsorption isotherms measured for the monomeric/gemini surfactant mixtures shift to the region of lower surfactant concentrations compared with the monomeric single systems; (ii) the adsorbed layer morphology largely depends on the mole fraction of 12-2-12 in the surfactant mixtures, and the increased 12-2-12 mole fraction results in the less curved surface aggregates; and (iii) the addition of 12-2-12 yields a relatively rigid adsorbed layer when compared with the layer formed by the monomeric single systems. These adsorption properties result from the fact that the more favorable interaction of 12-2-12 with the silica surface sites drives the overall surfactant adsorption in these mixtures, which is particularly obvious in the region of low surfactant concentrations and at the 12-2-12 low mole fractions. We believe that this knowledge should be important when considering the formulation of gemini surfactants into various chemical products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号