首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsu JP  Kuo CC  Ku MH 《Electrophoresis》2006,27(16):3155-3165
The electrophoresis of a toroid (doughnut-shaped entity) along the axis of a long cylindrical pore is analyzed under the conditions of low surface potential and weak applied electric field. The system under consideration is capable of modeling the electrophoretic behavior of various types of biocolloid such as bacterial DNA, plasmid DNA, and anabaenopsis, in a confined space. The influences of the key parameters of the problem, including the sizes of a toroid, the radius of a pore, and the thickness of the double layer, on the electrophoretic mobility of a toroid are discussed. We show that the electrophoretic behavior of a toroid under typical conditions can be different from that of an integrated entity. For instance, although the presence of the pore wall has the effect of retarding the movement of a particle, it becomes advantageous if a toroid is sufficiently close to the boundary. Several interesting behaviors are also observed, for example, the mobility of a toroid when the boundary effect is significant can be larger than that when it is insignificant.  相似文献   

2.
The influence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering the electrophoresis of a nonconducting ellipsoid along the axis of a cylindrical pore at the level of the linear Poisson-Boltzmann equation ignoring the polarization effect. The problem considered simulates the electrophoresis conducted in a narrow space such as capillary electrophoresis and electrophoresis through a porous medium. Here, because the effect of electroosmotic flow can be important the electrophoretic behavior is much more complicated than that for the case where a boundary is uncharged. The influences of the thickness of double layer, the aspect ratio of an ellipsoid, the relative radius of a pore, and the charge conditions on the ellipsoid and pore surfaces on the mobility of the ellipsoid are discussed. Several interesting but nonintuitive electrophoretic behaviors are observed.  相似文献   

3.
The electrophoresis of a finite cylindrical particle positioned eccentrically along the axis of a long cylindrical pore is modeled under the conditions of low surface potential and weak applied electric field. The influences of the eccentricity of a particle and its linear size, the radius of the pore, and the thickness of the electrical double layer on the electrophoretic mobility of the particle are investigated. Some interesting results are observed. For instance, for the case of a positively charged particle placed in an uncharged pore, if the double layer is thin and the particle is short, the mobility has a local minimum as the eccentricity varies. Also, for a short particle the mobility at a thinner double layer can be smaller than that at a thicker double layer, which has never been reported for the case of constant surface potential. In general, the mobility increases with the increase in the eccentricity, and this effect is pronounced when the size of a particle is large and/or the radius of a pore is small.  相似文献   

4.
The electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid is investigated theoretically. In addition to the boundary effect due to the presence of the pore, the influences of the thickness of double layer surrounding a particle and the properties of the fluid on the electrophoretic behavior of the particle are also examined. We show that, in general, the presence of the pore has the effect of retarding the movement of a particle. On the other hand, the shear-thinning nature of the liquid phase is advantageous to its movement. For both Newtonian and Carreau fluids, the mobility of a particle increases monotonically with the decrease in the thickness of double layer, but the mobility is more sensitive to the variation of the thickness of double layer in the latter. The mobility of a particle in a Carreau fluid is larger than that in the corresponding Newtonian fluid, and the difference between the two increases with the decrease in double-layer thickness; in addition, depending upon the values of the parameters assumed, the percentage difference can be in the order of 50%.  相似文献   

5.
The electrophoresis of a spherical particle along the axis of a cylindrical pore is investigated under conditions of low surface potential and thick double layer. In particular, the effect of electroosmotic flow is taken into account. The results of numerical simulation reveal that if both particle and pore are positively charged, the variation of the mobility of a particle may have a local minimum as the thickness of the double layer varies, which is not reported in the literature. This is mainly due to the charge induced on the particle surface, which arises from the presence of the charged boundary. Depending upon the level of the surface potential of the pore, the presence of the local minima may lead to a reversal in the direction of particle movement as the thickness of the double layer surrounding it varies: if the surface potential is either too low or too high, reversal does not occur; if it has a medium level, reversal occurs twice. This interesting observation can play a role in electrophoresis measurements. Previous analysis predicts that reversal always occurs once, regardless of the level of the surface potential of the pore.  相似文献   

6.
The electrophoresis of a rigid sphere along the axis of a cylindrical pore is investigated theoretically. Previous analysis is extended to the case where the effects of double-layer polarization and electroosmotic flow can be significant. The influences of the surface potential, the thickness of the double layer, and the relative size of a pore on the electrophoretic behavior of a sphere are discussed. Some interesting results are observed. For example, if both a sphere and a pore are positively charged, then the mobility of the sphere has a local minimum as the thickness of its double layer varies. Depending upon the level of the surface potential of a sphere and the degree of significance of the boundary effect, the mobility of the sphere may change its sign twice as the thickness of its double layer varies. This result can play a significant role in electrophoresis measurements.  相似文献   

7.
The boundary effect on the electrophoretic behavior of a particle is examined by considering a sphere at an arbitrary position in a spherical cavity for the case of low electrical potential and weak applied electric field. Here, a charge-regulated model is used to describe the charge conditions on the particle surface. This model finds practical applications where the behavior of biocolloids such as cells or microorganisms and entities covered by an artificial membrane need to be simulated. The two idealized models often used in relevant studies can be recovered as the limiting cases of the present model.  相似文献   

8.
9.
The electrophoresis of two identical spheres moving along the axis of a long cylindrical pore under the conditions of low surface potential and weak applied electric field is investigated. The geometry considered allows us to examine simultaneously the effects of boundary and the presence of a nearby entity on the behavior of a particle. The influences of the separation distance between two spheres, the thickness of a double layer, the ratio (radius of sphere/radius of pore), and the charged conditions on the surfaces of the spheres and the pore on the mobility of a particle are investigated. Several interesting results that are not reported in the literature are observed. For instance, although for the case of two positively charged spheres in an uncharged pore the qualitative behavior of a sphere depends largely on its size relative to that of a pore and the thickness of the double layer, this might not be the case when two uncharged spheres are in a positively charged pore. In addition, in the latter, the mobility of a sphere increases with the increases in the separation distance between two spheres, and this effect is pronounced when the ratio (radius of sphere/radius of pore) takes a medium value or the thickness of the double layer is either sufficiently thin or sufficiently thick.  相似文献   

10.
The electrophoresis of a charge-regulated spherical particle at an arbitrary position in a charged spherical cavity is modeled under conditions of low surface potential (<25 mV) and weak applied electric field (<25 kV/m). The charged cavity allows us to simulate the effect of electroosmotic flow, and the charge-regulated nature of the particle permits us to model various types of surface. The problem studied previously is reanalyzed based on a more rigorous electric force formula. In particular, the influences of various types of charged conditions on the electrophoretic behavior of a particle and the roles of all the relevant forces acting on the particle are examined in detail. Several new results are found. For instance, the mobility of a particle has a local minimum as the thickness of a double layer varies, which is not seen in the cases where the surface of a particle is maintained at a constant potential and at a constant charge density.  相似文献   

11.
The influence of electroosmotic flow (EOF) on the electrophoretic behavior of a particle is investigated by considering a rigid sphere in a charge-regulated, zwitterionic cylindrical pore filled with an aqueous solution containing multiple ionic species. This extends conventional analyses to a more general and realistic case. Taking a pore with pK(a) = 7 and pK(b) = 2 (point of zero charge is pH = 2.5) filled with an aqueous NaCl solution as an example, several interesting results are observed. For instance, if pH < 5.5, the particle mobility is influenced mainly by boundary effect, and is influenced by both EOF and boundary effects if pH ≥ 5.5. If pH is sufficiently high, the particle behavior is dominated by EOF, which might alter the direction of electrophoresis. The ratio of (pore radius/particle radius) influences not only the boundary effect, but also the strength of EOF. If the boundary effect is insignificant, the mobility varies roughly linearly with log(bulk salt concentration). These findings are of practical significance to both the interpretation of experimental data and the design of electrophoresis devices.  相似文献   

12.
The electrophoresis of a rigid, charge-regulated, spherical particle normal to a large disk is investigated under the conditions of low surface potential and weak applied electric field. We show that, although the presence of a charged disk does not generate an electroosmotic flow, it affects particle motion appreciably through inducing charge on its surface and establishing an osmotic pressure field. The competition between the hydrodynamic force and the electric force may yields a local extremum in mobility; it is also possible that the direction of particle movement is reversed. In general, if a particle remains at constant surface potential, a decrease in the thickness of double layer has the effect of increasing the electrostatic force acting on it so that its mobility increases. However, this might not be the case for a charged-regulated particle because an excess hydrodynamic force is enhanced. For a fixed separation distance, the influence of a charged disk on mobility may reduce to a minimum if the bulk concentration of hydrogen ion is equal to the dissociation constant of the monoprotic acidic functional groups on particle surface.  相似文献   

13.
Hsu JP  Kuo CC  Ku MH 《Electrophoresis》2008,29(2):348-357
The electrophoresis of a charge-regulated toroid (doughnut-shaped entity) normal to a large disk is investigated under the conditions of low surface potential and weak applied electric field. The system considered is capable of modeling the electrophoretic behavior of various types of biocolloids such as bacterial DNA, plasmid DNA, and anabaenopsis near a perfectly conducting planar wall. The influences of the size of the toroid, the separation distance between the toroid and the disk, the charged conditions on the surfaces of the toroid and the disk, and the thickness of electric double layer on the electrophoretic mobility of the toroid are discussed. The results of numerical simulation reveal that under typical conditions the electrophoretic behavior of the toroid can be different from that of an integrated entity. For instance, if the surface of the toroid carries both acidic and basic functional groups, its mobility may have a local maximum as the thickness of double layer varies. We show that the electrophoretic behavior of the toroid is different, both qualitatively and quantitatively, from that of the corresponding integrated particle (particle without hole).  相似文献   

14.
The boundary effect on the drag on two identical, nonuniformly structured flocs moving along the axis of a cylindrical tube filled with a Newtonian fluid is investigated at a small to medium larger Reynolds number. A two-layer model is adopted to simulate various possible structures of a floc, and the flow field inside is described by Darcy–Brinkman model. The results of numerical simulation reveal that a convective flow is present in the rear region of a floc when Reynolds number is on the order of 40. The presence of the tube wall and/or the porous structure of a floc has the effect of reducing that convective flow. For a fixed level of the volume-average permeability of a floc, the influence of the tube wall on the drag depends upon floc structure; the influence on a nonuniformly structured floc is more significant than that on a uniformly structured floc. The more nonuniform the floc structure, the more appreciable the deviation of the drag coefficient–Reynolds number curve from a Stokes’-law-like relation becomes. The smaller the volume-average permeability of a floc and/or the smaller the separation distance between the two flocs, the greater is the deviation, but the presence of the tube wall has the effect of reducing that deviation.  相似文献   

15.
Expressions are derived for the electrophoretic mobility of a cylindrical charged colloidal particle carrying a low zeta potential covered with an ion-penetrable uncharged polymer layer in an electrolyte solution. These expressions involve numerical integration of modified Bessel functions but are easily calculable with Mathematica. The obtained mobility expressions are a modification of Henry's mobility formula for a cylindrical particle taking into account the presence of the uncharged polymer layer.  相似文献   

16.
A proof of the stability of the unduloid configuration within a cylindrical pore is given. The proof involves calculus of variation techniques and in particular the theory of the problem of Bolza is used. It is shown that the unduloid configuration is stable to small disturbances provided dV/dκ < 0, where V represents the volume of the configuration and κ is the curvature of the configuration. If this condition is not satisfied the unduloid configuration is unstable.  相似文献   

17.
In a cylindrical pore of arbitrary wettability, we analyse the existence of a three-fluid contact line connecting the fluid-fluid interfaces between two bulk phases and the third phase contained in a cusp near the pore wall. This analysis is supported by the very similar, but simpler, analysis for a constriction between parallel plates. From the force balance at the contact line and the equations for the interface curvatures we derive expressions for the cusp height and for the capillary entry pressure related to piston-like displacement between the two bulk phases. The latter is independent of the existence of a cusp and its phase pressure. Based on some realistic assumptions, of which the most important is that a cusp grows continuously from the onset when its phase pressure is increased, we analyse under which conditions a cusp can exist, and, when it exists, what its behaviour is as a function of the cusp phase pressure. We find a simple criterion involving (two ratios of) the three interfacial tensions and two of the three contact angles, which determines whether the three-fluid contact line and, consequently, a cusp exists. The range of contact angles, as well as the size of the cusp increases, when the cusp phase is close to spreading. Not only cusps of the wetting phase can occur, but also of the intermediate-wetting phase. Numerical examples are presented to illustrate the range of behaviour of the cusps.  相似文献   

18.
We calculate the mean end-to-end distance R of a self-avoiding polymer encapsulated in an infinitely long cylinder with radius D. A self-consistent perturbation theory is used to calculate R as a function of D for impenetrable hard walls and soft walls. In both cases, R obeys the predicted scaling behavior in the limit of large and small D. The crossover from the three-dimensional behavior (D --> infinity) to the fully stretched one-dimensional case (D --> 0) is nonmonotonic. The minimum value of R is found at D approximately 0.46R(F), where R(F) is the Flory radius of R at D --> infinity. The results for soft walls map onto the hard wall case with a larger cylinder radius.  相似文献   

19.
The impedance of a cylindrical pore electrode in the case where the potential gradient due to the electrolyte resistivity is coupled to the axial concentration gradient of reacting species has been calculated semi-analytically from the approximate solution reported previously for the steady-state concentration and current profiles in the pore. Complex plane impedance plots, computed by an iteration technique for the transmission line, indicate: (i) a quasi-semi-circular diffusion loop at low frequencies due to diffusion control; and (ii) a high frequency loop in which the frequency dispersion is strongly dependent on the electrode parameters (electrolyte resistivity, diffusion coefficient of the reacting species, pore depth, Tafel coefficient of the electrochemical reaction and overall current flowing through the pore).  相似文献   

20.
We examine the microscopic structure of a hard-sphere fluid confined to a small cylindrical pore by means of Monte Carlo simulation. In order to analyze finite-size effects, the simulations are carried out in the framework of different statistical mechanics ensembles. We find that the size effects are specially relevant in the canonical ensemble where noticeable differences are found with the results in the grand canonical ensemble (GCE) and the isothermal isobaric ensemble (IIE) which, in most situations, remain very close to the infinite system results. A customary series expansion in terms of fluctuations of either the number of particles (GCE) or the inverse volume (IIE) allows us to connect with the results of the canonical ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号