首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The temperature and pressure dependence of the rate coefficient for the reaction H + SO2 has been measured using a laser flash photolysis/laser-induced fluorescence technique, for 295 10(3) atm, the latter proceeds directly from H + SO2, via the energized states of HOSO. The derived rate coefficients rely heavily on measurements of the reverse reaction, OH + SO, which has only been determined at temperatures up to 700 K.  相似文献   

2.
Photodissociation dynamics of 1,2-butadiene at 157 nm   总被引:1,自引:0,他引:1  
Photodissociation dynamics of 1,2-butadiene at 157 nm has been investigated using a molecular beam apparatus based on photoionization using vacuum ultraviolet synchrotron radiation. Six dissociation pathways have been observed. The observed channels are C4H5+H, C4H4+H2, C3H3+CH3, C2H3+C2H3, C2H4+C2H2, and C4H4+H+H. Among all the dissociation channels, the C3H3+CH3 channel is found to be the dominant process. The product kinetic energy distributions of all dissociation channels have been determined from simulating the experimental time-of-flight spectra. Relative branching ratios for all observed dissociation channels were also estimated based on all detected products.  相似文献   

3.
Multiphoton excitation and dissociation of SO(2) have been investigated in the wavelength range from 224 to 232 nm. Strong evidence is found for two-photon excitation to the H Rydberg state, followed by dissociation to SO + O and ionization of the SO product by absorption of a third photon. The two-photon excitation is resonantly enhanced via the C (1)B(2) intermediate state, and the two-photon yield spectrum thus bears a strong resemblance to the spectrum of this intermediate. Imaging of the O((3)P(2)), S((1)D(2)), and SO products suggests that, following dissociation of SO(2) from the H state, SO is produced in the A and B electronic states. S((1)D(2)) is produced both from two-photon dissociation of SO(2) to give S((1)D(2)) + O(2) and by single-photon dissociation of SO(+). In the former process, the O(2) is likely formed in all of its lowest three electronic states.  相似文献   

4.
The photodissociation dynamics of 1,3-butadiene at 193 nm have been investigated with photofragment translational spectroscopy coupled with product photoionization using tunable VUV synchrotron radiation. Five product channels are evident from this study: C(4)H(5) + H, C(3)H(3) + CH(3), C(2)H(3) + C(2)H(3), C(4)H(4) + H(2), and C(2)H(4) + C(2)H(2). The translational energy (P(E(T))) distributions suggest that these channels result from internal conversion to the ground electronic state followed by dissociation. To investigate the dissociation dynamics in more detail, further studies were carried out using 1,3-butadiene-1,1,4,4-d(4). Branching ratios were determined for the channels listed above, as well as relative branching ratios for the isotopomeric species produced from 1,3-butadiene-1,1,4,4-d(4) dissociation. C(3)H(3) + CH(3) is found to be the dominant channel, followed by C(4)H(5) + H and C(2)H(4) + C(2)H(2), for which the yields are approximately equal. The dominance of the C(3)H(3) + CH(3) channel shows that isomerization to 1,2-butadiene followed by dissociation is facile.  相似文献   

5.
Photodissociation dynamics of ketene at 157.6 nm has been investigated using the photofragment translational spectroscopic technique based on photoionization detection using vacuum-ultraviolet synchrotron radiation. Three dissociation channels have been observed: CH2+CO, CH+HCO, and HCCO+H. The product translational energy distributions and angular anisotropy parameters were measured for all three observed dissociation channels, and the relative branching ratios for different channels were also estimated. The experimental results show that the direct C-C bond cleavage (CH2+CO) is the dominant channel, while H migration and elimination channels are very minor. The results in this work show that direct dissociation on excited electronic state is much more significant than the indirect dissociation via the ground state in the ketene photodissociation at 157.6 nm.  相似文献   

6.
We report the vibrationally mediated photodissociation dynamics of C2H4+ excited through the B2Ag state. Vibrational state-selected ions were prepared by two-photon resonant, three-photon ionization of ethylene via (pi, 3s) and (pi, 3p) Rydberg intermediate states in the wavelength range 298-349 nm. Absorption of a fourth photon led to dissociation of the cation, and images of the product ions C2H3+ and C2H2+ were simultaneously recorded using reflectron multimass velocity map imaging. Analysis of the multimass images yielded, with high precision, both the total translational energy distributions for the two dissociation channels and the branching between them as a function of excitation energy. The dissociation of ions that were initially prepared with torsional excitation exceeding the barrier to planarity in the cation ground state consistently gave enhanced branching to the H elimination channel. The results are discussed in terms of the influence of the initial state preparation on the competition between the internal conversion to the ground state and to the first excited state.  相似文献   

7.
Reduced-dimensionality quantum reactive scattering calculations for the C(3P) + C2H2 reaction have been carried out in order to understand the product branching dynamics of cyclic-C3H + H and linear-C3H + H. Our model treats only two degrees of freedom but can explicitly describe both of the C3H isomer product channels. The lowest triplet potential energy surface has been obtained by the hybrid density-functional method at the B3LYP/6-31G(d,p) level of theory. The calculated reaction probabilities were found to be dominated by resonance consistent with the complex-formation potential, and the results show that cyclic-C3H is preferentially formed via the cyclic-C3H2 intermediate produced by insertion of C(3P) into the CC bond. We have found that the isomerization from the cyclic-C3H2 to linear-C3H2 intermediate is suppressed by a barrier separating potential wells corresponding to these two intermediates. It has also been found that the energy dependence of the calculated total reaction cross section is in good agreement with the result of crossed molecular beam experiments.  相似文献   

8.
The ultraviolet (UV) photodissociation of jet-cooled 1-pentyl radical is investigated in the wavelength region of 236-254 nm using the high-n Rydberg-atom time-of-flight (HRTOF) technique. The H-atom photofragment yield spectrum of the 1-pentyl radical shows a broad UV absorption feature peaking near 245 nm, similar to the 2pz→3s absorption bands of ethyl and n-propyl. The center-of-mass translational energy distribution, P(ET), of the H+C5H10 product channel is bimodal, with a slow peak at ~5 kcal/mol and a fast peak at ~50 kcal/mol. The fraction of the average translational energy release in the total available energy, 〈fT〉, is 0.30, with those of the slow and fast components being 0.13 and 0.58, respectively. The slow component has an isotropic product angular distribution, while the fast component is anisotropic with an anisotropy parameter ~0.4. The bimodal translational energy and angular distributions of the H+C5H10 products indicate two H-atom elimination channels in the photodissociation of 1-pentyl:(ⅰ) a direct, prompt dissociation from the electronic excited state and/or the repulsive part of the ground electronic state potential energy surface; and (ⅱ) a unimolecular dissociation of internally hot radical in the ground electronic state after internal conversion from the electronic excited state.  相似文献   

9.
Intermediate and transition-state energies have been calculated for the O+C3H6 (propene) reaction using the compound ab initio CBS-QB3 and G3 methods in combination with density functional theory. The lowest-lying triplet and singlet potential energy surfaces of the O-C3H6 system were investigated. RRKM statistical theory was used to predict product branching fractions over the 300-3000 K temperature and 0.001-760 Torr pressure ranges. The oxygen atom adds to the C3H6 terminal olefinic carbon in the primary step to generate a nascent triplet biradical, CH3CHCH2O. On the triplet surface, unimolecular dissociation of CH3CHCH2O to yield H+CH3CHCHO is favored over the entire temperature range, although the competing H2CO+CH3CH product channel becomes significant at high temperature. Rearrangement of triplet CH3CHCH2O to CH3CH2CHO (propanal) via a 1,2 H-atom shift has a barrier of 122.3 kJ mol(-1), largely blocking this reaction channel and any subsequent dissociation products. Intersystem crossing of triplet CH3CHCH2O to the singlet surface, however, leads to facile rearrangement to singlet CH3CH2CHO, which dissociates via numerous product channels. Pressure was found to have little influence over the branching ratios under most conditions, suggesting that the vibrational self-relaxation rates for p相似文献   

10.
The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three major dissociation channels have been studied: C6H6(2+) --> C3H3(+) + C3H3(+), C4H3(+) + C2H3(+), and C5H3(+) + CH3(+). The calculated energetics suggest that the products will be formed with considerable translational energy because of the Coulomb repulsion between the charged fragments. The calculated energy release in the three channels shows a qualitative agreement with the experimentally observed kinetic energy release. The formation of certain intermediates is found to be common to the three dissociation channels.  相似文献   

11.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

12.
Multiply-charged peptide cations comprised of two polypeptide chains (designated A and B) bound via a disulfide linkage have been reacted with SO2-* in an electrodynamic ion trap mass spectrometer. These reactions proceed through both proton transfer (without dissociation) and electron transfer (with and without dissociation). Electron transfer reactions are shown to give rise to cleavage along the peptide backbone, loss of neutral molecules, and cleavage of the cystine bond. Disulfide bond cleavage is the preferred dissociation channel and both Chain A (or B)-S* and Chain A (or B)-SH fragment ions are observed, similar to those observed with electron capture dissociation (ECD) of disulfide-bound peptides. Electron transfer without dissociation produces [M + 2H]+* ions, which appear to be less kinetically stable than the proton transfer [M + H]+ product. When subjected to collision-induced dissociation (CID), the [M + 2H]+* ions fragment to give products that were also observed as dissociation products during the electron transfer reaction. However, not all dissociation channels noted in the electron transfer reaction were observed in the CID of the [M + 2H]+* ions. The charge state of the peptide has a significant effect on both the extent of electron transfer dissociation observed and the variety of dissociation products, with higher charge states giving more of each.  相似文献   

13.
The dissociation dynamics of HOD via two-photon excitation to the C? state have been investigated using the H-atom Rydberg tagging time-of-flight (TOF) technique. The H-atom action spectrum for the C? ← X? transition shows resolved rotational structure. Product translational energy distributions and angular distributions have also been recorded for the H + OD channel for three excited levels each with k(a)′ = 2. From these distributions, quantum state distributions and angular anisotropy parameters (β2 and β4) for the OD product were determined. These results are consistent with the nonadiabatic predissociation picture illustrated in the one-photon dissociation process for H2O. The heterogeneous dissociation pathway via Coriolis coupling is the dominant dissociation process in the present study. A high proportion of the total available energy is deposited into the rotational energy of the OD product. The anisotropic recoil distributions reveal the distinctive contributions from the alignment of the excited states and the dissociation process. Comparisons are also made between the results for HOD and H2O via the equivalent rotational transitions. The OH bond energy, D(o)(H?OD), of the HOD molecule is also determined to be 41283.0 ± 5 cm(-1).  相似文献   

14.
Ab initio CCSD(T)/CBS//B3LYP/6-311G** calculations of the potential energy surface for possible dissociation channels of the phenyl radical are combined with microcanonical Rice-Ramsperger-Kassel-Marcus calculations of reaction rate constants in order to predict statistical product branching ratios in photodissociation of c-C(6)H(5) at various wavelengths. The results indicate that at 248 nm the photodissociation process is dominated by the production of ortho-benzyne via direct elimination of a hydrogen atom from the phenyl radical. At 193 nm, the statistical branching ratios are computed to be 63.4%, 21.1%, and 14.4% for the o-C(6)H(4) + H, l-C(6)H(4) ((Z)-hexa-3-ene-1,5-diyne) + H, and n-C(4)H(3) + C(2)H(2) products, respectively, in a contradiction with recent experimental measurements, which showed C(4)H(3) + C(2)H(2) as the major product. Although two lower energy pathways to the i-C(4)H(3) + C(2)H(2) products are identified, they appeared to be kinetically unfavorable and the computed statistical branching ratio of i-C(4)H(3) + C(2)H(2) does not exceed 1%. To explain the disagreement with experiment, we optimized conical intersections between the ground and the first excited electronic states of C(6)H(5) and, based on their structures and energies, suggested the following photodissociation mechanism at 193 nm: c-C(6)H(5) 1 → absorption of a photon → electronically excited 1 → internal conversion to the lowest excited state → conversion to the ground electronic state via conical intersections at CI-2 or CI-3 → non-statistical decay of the vibrationally excited radical favoring the formation of the n-C(4)H(3) + C(2)H(2) products. This scenario can be attained if the intramolecular vibrational redistribution in the CI-2 or CI-3 structures in the ground electronic state is slower than their dissociation to n-C(4)H(3) + C(2)H(2) driven by the dynamical preference.  相似文献   

15.
The energy-resolved competitive collision-induced dissociation of the proton-bound complex [HS.H.CN](-) is studied in a guided ion beam tandem mass spectrometer. H(2)S and HCN have nearly identical gas-phase acidities, and therefore, the HS(-) + HCN and the CN(-) + H(2)S product channels exhibit nearly the same threshold energies, as expected. However, the HS(-) + HCN channel has a cross section up to a factor of 50 larger than CN(-) + H(2)S at higher energies. The cross sections are modeled using RRKM theory and phase space theory. The complex dissociates to HS(-)+ HCN via a loose transition state, and it dissociates to CN(-) + H(2)S via a tight transition state. Theoretical calculations show that the proton-transfer potential energy surface has a single minimum and that the hydrogen bonding in the complex is strongly unsymmetrical, with an ion-molecule complex of the form HS(-)..HCN rather than CN(-)..H(2)S or an intermediate structure. The requirement for proton transfer before dissociation and curvature along the reaction path impedes the CN(-) + H(2)S product channel.  相似文献   

16.
Photodissociation of pyrimidine at 193 and 248 nm was investigated separately using vacuum ultraviolet photoionization at 118.4 and 88.6 nm and multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C4N2H4 --> C4N2H3 + H and five ring opening dissociation channels, C4N2H4 --> C3NH3 + HCN, C4N2H4 --> 2C2NH2, C4N2H4 --> CH3N + C3NH, C4N2H4 --> C4NH2 + NH2, and C4N2H4 --> CH2N + C3NH2. Only the first four channels were observed at 248 nm. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion at both wavelengths. The dissociation rates were found to be >5 x 10(7) and 1 x 10(6) s(-1) at 193 and 248 nm, respectively. Comparison with the potential energies from ab initio calculations have been made.  相似文献   

17.
A new imaging technique, reflectron multimass velocity map ion imaging, is used to study the vibrationally mediated photodissociation dynamics in the ethylene cation. The cation ground electronic state is prepared in specific vibrational levels by two-photon resonant, three-photon ionization via vibronic bands of (pi, nf) Rydberg states in the vicinity of the ionization potential of ethylene, then photodissociated through the (B 2A(g)) excited state. We simultaneously record spatially resolved images of parent C2H4+ ions as well as photofragment C2H3+ and C2H2+ ions originating in dissociation from the vibronic excitations in two distinct bands, 7f 4(0)2 and 8f 0(0)0, at roughly the same total energy. By analyzing the images, we directly obtain the total translation energy distributions for the two dissociation channels and the branching between them. The results show that there exist differences for competitive dissociation pathways between H and H2 elimination from C2H4+ depending on the vibronic preparation used, i.e., on the vibrational excitation in the ground state of the cation prior to photodissociation. Our findings are discussed in terms of the possible influence of the torsional excitation on competition between direct dissociation, isomerization, and radiationless transitions through conical intersections among the numerous electronic states that participate in the dissociation.  相似文献   

18.
Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this paper direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicals is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all pi-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C(6)H(5) + H --> C(6)H(6) exit channel of the C(3)H(3) + C(3)H(3) reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH(3) + H reference system. For the C(3)H(3) + C(3)H(3) reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C(6)H(5) + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C(3)H(3) + C(3)H(3) and C(3)H(5) + C(3)H(5) self-reactions compare favorably with the available experimental data. To our knowledge there are no experimental rate data for the C(3)H(3) + C(3)H(5) reaction.  相似文献   

19.
Photodissociation of pyridine, 2,6-d2-pyridine, and d5-pyridine at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C5NH5 --> C5NH4 + H (10%) and five ring opening dissociation channels, C5NH5 --> C4H4 + HCN, C5NH5 --> C3H3 + C2NH2, C5NH5 --> C2H4 +C3NH, C5NH5 --> C4NH2 + CH3 (14%), and C5NH5 --> C2H2 + C3NH3. Extensive H and D atom exchanges of 2,6-d2-pyridine prior to dissociation were observed. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion. The dissociation rate of pyridine excited by 248-nm photons was too slow to be measured, and the upper limit of the dissociation rate was estimated to be 2x10(3) s(-1). Comparisons with potential energies obtained from ab initio calculations and dissociation rates obtained from the Rice-Ramsperger-Kassel-Marcus theory have been made.  相似文献   

20.
A single trajectory (ST) direct dynamics approach is compared with quasiclassical trajectory (QCT) direct dynamics calculations for determining product energy partitioning in unimolecular dissociation. Three comparisons are made by simulating C(2)H(5)F-->HF + C(2)H(4) product energy partitioning for the MP26-31G(*) and MP26-311 + + G(**) potential energy surfaces (PESs) and using the MP26-31G(*) PES for C(2)H(5)F dissociation as a model to simulate CHCl(2)CCl(3)-->HCl + C(2)Cl(4) dissociation and its product energy partitioning. The trajectories are initiated at the transition state with fixed energy in reaction-coordinate translation E(t) (double dagger). The QCT simulations have zero-point energy (ZPE) in the vibrational modes orthogonal to the reaction coordinate, while there is no ZPE for the STs. A semiquantitative agreement is obtained between the ST and QCT average percent product energy partitionings. The ST approach is used to study mass effects for product energy partitioning in HX(X = F or Cl) elimination from halogenated alkanes by using the MP26-31G(*) PES for C(2)H(5)F dissociation and varying the masses of the C, H, and F atoms. There is, at most, only a small mass effect for partitioning of energy to HX vibration and rotation. In contrast, there are substantial mass effects for partitioning to relative translation and the polyatomic product's vibration and rotation. If the center of mass of the polyatomic product is located away from the C atom from which HX recoils, the polyatomic has substantial rotation energy. Polyatomic products, with heavy atoms such as Cl atoms replacing the H atoms, receive substantial vibration energy that is primarily transferred to the wag-bend motions. For E(t) (double dagger) of 1.0 kcalmol, the ST calculations give average percent partitionings to relative translation, polyatomic vibration, polyatomic rotation, HX vibration, and HX rotation of 74.9%, 6.8%, 1.5%, 14.4%, and 2.4% for C(2)H(5)F dissociation and 39.7%, 38.1%, 0.2%, 16.1%, and 5.9% for a model of CHCl(2)CCl(3) dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号