首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In communication processes, amplitude modulation is very helpful to save power using a single band transmission. Using the hydrodynamical model of semiconductor plasma analytical investigations are made for the amplitude modulation as well as demodulation of an electromagnetic wave incorporating carrier heating (CH) effects in acousto-optic magnetised semiconductor plasma. The CH effects add new dimensions in the present analysis. Analysis are made under different wave number regions over a wide range of cyclotron frequencies. It is found that incorporation of CH effects modifies the amplitude modulation and demodulation processes effectively. Numerical estimations are made for III–V semiconductor crystal irradiated by pump wave of frequency 1.6×1013 s?1. Complete absorption of the waves takes place in all the possible wavelength regimes when the cyclotron frequency ωc becomes nearly equal to ω0, the pump frequency on neglecting the collision term in modulation/ demodulation indices.  相似文献   

2.
A low-order model of rapid thermal processing (RTP) of semiconductor wafers is derived. The first-principles nonlinear model describes the static and dynamic thermal behavior of a wafer with approximate spatial temperature uniformity undergoing rapid heating and cooling in a multilamp RTP chamber. The model is verified experimentally for a range of operating temperatures from 400° C to 900° C and pressures of 1 Torr and 1 atmosphere in an inert N2 environment. Theoretical predictions suggest model validity over a still wider range of operating conditions. One advantage of the low-order model over previous high-order and statistical models is that the proposed model contains a small number of fundamental parameters and functions that, if necessary, are easily identifiable. Furthermore, because of reduced computational complexity, the low-order model can be used in real-time predictive applications including signal processing and process control design. In studying and verifying the model, the dynamic behavior of a semiconductor wafer undergoing rapid temperature changes is characterized. Close comparison between theory and experiment in terms of the wafer eigenvalue and dc gain is demonstrated; the strong nonlinear effects of temperature are shown. Convective heat transfer losses are also examined and are shown to increase with radial position on the wafer.  相似文献   

3.
Thin aluminum oxide layers deposited on silicon by thermal atomic layer deposition can be used to reduce the electronic recombination losses by passivating the silicon surfaces. To activate the full passivation ability of such layers, a post-deposition annealing step at moderate temperatures (≈400 °C, duration≈30 min) is required. Such an annealing step is commonly done in an oven in air, nitrogen, or forming gas atmosphere. In this work, we investigate the ability to reduce the duration of the annealing step by heating the silicon wafer with a microwave source. The annealing time is significantly reduced to durations below 1 min while achieving effective minority carrier lifetimes similar or higher to that of conventionally oven-annealed samples.  相似文献   

4.
The influence of the doping level on the effect of the temperature bistability in a silicon wafer upon radiative heat transfer between the wafer and the elements of the heating system is studied. Theoretical transfer characteristics are constructed for a silicon wafer doped with donor and acceptor impurities. These characteristics are compared with the transfer characteristics obtained during heating and cooling of wafers with the hole conduction (with dopant concentrations of 1015, 2 × 1016, and 3 × 1017 cm?3) and electron conduction (with impurity concentrations of 1015 and 8 × 1018 cm?3) in a thermal reactor of the rapid thermal annealing setup. It is found that the width and height of the hysteresis loop decrease with increasing dopant concentration and are almost independent of the type of conduction of the silicon wafer. The critical value of the impurity concentration of both types is 1.4 × 1017 cm?3. For this concentration, the loop width vanishes, and the height corresponds to the minimal value of the temperature jump (~200 K). The mechanism of temperature bistability in the silicon wafer upon radiative heat transfer is discussed.  相似文献   

5.
李巍  李斌成 《物理学报》2009,58(9):6506-6511
根据调制自由载流子吸收(modulated free carrier absorption,MFCA)检测技术的三维理论模型,采用变间距频率扫描方式测量单晶硅样品的电子输运参数,进行了仿真与实验,对结果进行了分析;通过多参数拟合,获取了测试样品的载流子扩散系数、少数载流子寿命和前表面复合速度.仿真与实验都表明,变间距频率扫描结合多参数拟合,可以提高输运参数的测量精度. 关键词: 调制自由载流子吸收 电子输运参数 变间距频率扫描 多参数拟合  相似文献   

6.
The purpose of the present paper is to report the study on modulational amplification in diffusive semiconductors including hot carrier effects. Considering that the origin of modulational interaction lies in the third-order optical susceptibility χ (3) arising from the nonlinear diffusion current density and using coupled mode theory, an analytical investigation of frequency modulational interaction between co-propagating laser beams and internally generated acoustic mode is presented. We have studied the steady state and transient amplification characteristics of modulated waves arising in diffusive semiconductor plasmas. The effect of carrier heating adds new dimensions to the present study. The heating effect reduces the required threshold amplitude of wave and enhances steady-state as well as transient gain of the generated acoustic mode.  相似文献   

7.
The present paper is aimed to the exploration of modulational amplification in transversely magnetised diffusive semiconductors. By considering that the origin of modulational interaction lies in the third-order optical susceptibility c(3)\chi^{(3)} arising from the nonlinear diffusion current density and using coupled mode theory, an analytical investigation of frequency modulational interaction between co-propagating laser beams and internally generated acoustic mode is presented. We have studied the steady state and transient amplification characteristics of modulated waves arising in the transversely magnetised semiconductor plasmas. The effect of carrier heating adds new dimensions to the present study. The heating effect reduces the required threshold amplitude of wave and enhances steady-state as well as transient gain of the generated acoustic mode.  相似文献   

8.
This study was aimed at introducing the laser induced thermal-crack propagation (LITP) technology to solve the silicon-glass double layer wafer dicing problems in the packaging procedure of silicon-glass device packaged by WLCSP technology, investigating the feasibility of this idea, and studying the crack propagation process of LITP cutting double layer wafer. In this paper, the physical process of the 1064 nm laser beam interact with the double layer wafer during the cutting process was studied theoretically. A mathematical model consists the volumetric heating source and the surface heating source has been established. The temperature and stress distribution was simulated by using finite element method (FEM) analysis software ABAQUS. The extended finite element method (XFEM) was added to the simulation as the supplementary features to simulate the crack propagation process and the crack propagation profile. The silicon-glass double layer wafer cutting verification experiment under typical parameters was conducted by using the 1064 nm semiconductor laser. The crack propagation profile on the fracture surface was examined by optical microscope and explained from the stress distribution and XFEM status. It was concluded that the quality of the finished fracture surface has been greatly improved, and the experiment results were well supported by the numerical simulation results.  相似文献   

9.
Ultrathin silicon wafer technology is reviewed in terms of the semiconductor applications, critical challenges, and wafer pre-assembly and assembly process technologies and their underlying mechanisms. Mechanical backgrinding has been the standard process for wafer thinning in the semiconductor industry owing to its low cost and productivity. As the thickness requirement of wafers is reduced to below 100 μm, many challenges are being faced due to wafer/die bow, mechanical strength, wafer handling, total thickness variation (TTV), dicing, and packaging assembly. Various ultrathin wafer processing and assembly technologies have been developed to address these challenges. These include wafer carrier systems to handle ultrathin wafers; backgrinding subsurface damage and surface roughness reduction, and post-grinding treatment to increase wafer/die strength; improved wafer carrier flatness and backgrinding auto-TTV control to improve TTV; wafer dicing technologies to reduce die sidewall damage to increase die strength; and assembly methods for die pick-up, die transfer, die attachment, and wire bonding. Where applicable, current process issues and limitations, and future work needed are highlighted.  相似文献   

10.
Thin film materials are widely used in the fabrication of semiconductor microelectronic devices. In thin film deposition, cleanliness of substrate surface have become critically important as over 50% of yield losses in integrated circuit fabrication are caused by microcontamination [1]. There are many wafer cleaning techniques. The most successful approach for silicon wafer cleaning technique is RCA clean [2]. But for glass substrate it is still not known which procedure of cleaning is the best. This paper provides an understanding of the right way of glass wafer cleaning method, with a focus towards identifying good bond strength. Two wafer cleaning techniques have been used for cleaning glass substrates in the context of laser micro-joining of dissimilar substrates. First cleaning procedure involves two steps, first cleaning in acetone solution and then in DI water solution. After each step dried with N2. Second cleaning procedure involves four steps, first cleaning with 1% Alconox solution, second in DI water, third in acetone solution and finally in a methanol solution and dried with N2 after each step. Deposition of Ti thin film on top of these two types of substrate using DC magnetron sputtering method also showed better adhesion of Ti film on glass for the second type of cleaning method. Scanning electron microscopy (SEM) analyses of the lap shear tested failed surfaces for these two kinds of samples revealed strong bond for samples prepared by second cleaning method compared to first cleaning method. Characterization of these two sets of samples using X-ray photoelectron spectroscopy (XPS) has shown excellent contamination removal for the second cleaning method. This modification is believed to be due to reduction of carbon contamination.  相似文献   

11.
Indium phosphide (InP) semiconductor nanoparticles were obtained by laser ablation of a crystalline wafer in water. The transmission electron microscopy micrographs of the nanoparticles show that their size is in the range of 100 nm. In the Raman spectrum of the nanoparticles, the characteristic peaks of InP have been observed in the vicinity of 300 and 340 cm−1. The binding energies as measured from the X-ray photoemission spectra are consistent with values for InP crystal as well as indium oxides.  相似文献   

12.
We report on a new Laser Rapid Thermal Annealing (Laser-RTA) technique for one-step bandgap engineering at selected areas of quantum semiconductor wafers. The technique is based on using a 150 W 980 nm fiber coupled laser diode and a 30 W TEM00 1064 nm Nd:YAG laser for background heating and ‘writing’, respectively, the regions of the quantum well intermixed (QWI) material. The implementation of a 3D Finite Element Method for modeling of laser induced temperature profiles allows for the design of processing schemes that are required for accurate bandgap engineering at the wafer level. We demonstrate that arbitrary shaped lines of the QWI material can be fabricated with the Laser-RTA technique in InGaAs/InGaAsP quantum well microstructures.  相似文献   

13.
We propose and demonstrate a reflection-type optical modulator, with surface-normal architecture, that exploits the optical saturation of absorption in semiconductor quantum wells. The modulation section of the modulator, which is composed of quantum wells placed within a Fabry-Perot cavity, is optically controlled by an intensity-modulated beam generated by an in-plane laser integrated monolithically on the same wafer and grown in a single epitaxial step. The modulation section and the in-plane laser share the same medium; therefore, efficient coupling between the control beam and the signal beam is achieved. The device was successfully used for active mode locking of an erbium-doped fiber laser.  相似文献   

14.
A new optical technique based on heterodyne polarimetry is developed for fast measurement of critical dimensions on semiconductor wafers, particularly on those of memory chips. Sub-wavelength periodical structure of a sample acts as a wire-grid polarizer, making both the amplitude and phase of the reflected laser beam dependent on geometrical dimensions and optical properties of the wafer pattern. The heterodyne technology based on the cross-polarized two-frequency Zeeman laser is used to simultaneously measure the amplitude and the phase of the reflected laser beam. Very fast and efficient effective medium trapezoidal algorithm is developed for extracting values of critical dimension from the measurements. The technique is most suitable for inspection of multi-periodical patterns consisting of large number of periodically distributed small areas of sub-wavelength gratings. Theoretical background, simulation, and experimental results are presented.  相似文献   

15.
Using hydrodynamic model of semiconductor plasmas and coupled-mode theory of interacting waves, we have analytically investigated parametric interaction in a magnetised piezoelectric semiconductor plasma in non-relativistic domain. The temperature dependence of momentum transfer collision frequency of electrons due to their heating by the pump is assumed to induce nonlinearity in the medium. We have derived a dispersion relation which finally gives four unstable acoustic modes; two forward amplifying modes and two backscattered attenuating modes. We have also obtained an expression for the critical pump amplitude ( ) at and around which gains and phase velocities of amplifying acoustic modes become least dependent on the pump amplitude and static magnetic field . The required can be readily obtained from a pulsed 10.6 μm CO2 laser. The magnetic field is found to shift the critical point towards lower pump amplitudes. Received 5 September 2000 and Received in final form 5 March 2001  相似文献   

16.
刘俊岩  宋鹏  秦雷  王飞  王扬 《物理学报》2015,64(8):87804-087804
建立了调制激光诱发硅晶圆少数载流子密度波一维模型, 仿真分析了少数载流子输运参数对调制激光诱发载流子辐射信号频域响应的影响. 利用调制激光诱发载流子辐射扫描成像系统对含有表面划痕的硅晶圆进行了扫描成像试验研究. 通过少数载流子密度波模型与多参数拟合方法反求得到了扫描区域的输运参数二维分布图. 该方法得到的少数载流子寿命与利用传统光电导方法测量的少数载流子寿命结果相符; 分析了划痕对载流子输运参数造成的影响, 与光电导方法比较, 该方法可以测量不同位置的全部载流子输运参数且分辨率高.  相似文献   

17.
张希仁  李斌成  刘显明 《物理学报》2008,57(11):7310-7316
推导出用于测量半导体载流子输运特性(载流子寿命、载流子扩散系数和前表面复合速度)的调制自由载流子吸收(modulated free carrier absorption, MFCA)检测技术的三维理论模型,给出了调制自由载流子吸收检测信号与调制频率和抽运-探测光相对距离的关系.定性分析了在不同调制频率时各个载流子输运参数对径向位置扫描曲线(信号与两束光相对距离的关系)的影响,结果表明调制自由载流子吸收检测信号对各个参数的灵敏度随抽运-探测光相对距离的增加而增加.仿真和实验结果表明,通过拟合不同调制频率时调 关键词: 调制自由载流子吸收 载流子输运特性 径向位置扫描  相似文献   

18.
It is found numerically that the time-bandwidth product (TBP) of optical pulse from a gain-switched semiconductor laser operating under a sufficient gain saturation condition increases monotonously with increasing modulation amplitude. This enhancement of the TBP becomes remarkable for longer-wavelength semiconductor lasers (1.3, 1.55 μm) having large value of the gain compression factor ε (∼ 10−23 m3), making the pulse chirp estimation using the TBP difficult.  相似文献   

19.
The features of metal‒semiconductor kinetic phase transformation in ferromagnetic semiconductors are studied. It is shown that heat release caused by current results in a positive feedback between the current density and the sample temperature, magnetization, and thermal-spin fluctuation amplitude. The Joule heating of the sample leads to disappearance of magnetization and, as a result, to restoration of the forbidden band between the conduction and valence bands. However, the energy gap width continues to change due to an increase in the fluctuations of internal exchange fields splitting the electron states. Within the framework of the developed model, an S-shaped volt-ampere characteristic is obtained for a EuO1–δ, ferromagnetic semiconductor. The lower branch of the characteristic corresponds to a ferromagnetic metal state (a “cold” phase) and the upper one is due to a semiconductor paramagnetic state (a “hot” phase).  相似文献   

20.
太赫兹时域光谱技术是一种在太赫兹频段内,广泛应用的光谱测量技术。这种技术可以用于许多物质的频谱分析,对于研究化学、半导体与生物分子等领域有着无可比拟的作用。然而用该系统进行样品探测时,受回波的影响频谱分辨率较低;受太赫兹波光斑大小以及待测样品与电磁波相互作用距离长短的影响,样品消耗量较多,并且整个系统的占用空间较大,这些局限性都限制了太赫兹时域光谱系统的进一步发展。为了突破太赫兹时域光谱系统的局限性,设计了一种将太赫兹泵浦区、探测区和传输波导集成到一个硅片上的太赫兹片上系统,该系统不仅能够解决上述系统的局限性,还能够省去样品测量前的光路准直环节,使样品的测量过程更加简便,同时集成化的系统也很大程度上提高了太赫兹波传输的稳定性。在太赫兹片上系统中,泵浦区和探测区的光电导天线是由低温砷化镓和金属电极制成,由于受到太赫兹片上系统的高度集成化和低温砷化镓晶体生长条件的限制,如何制备出低温砷化镓半导体薄膜衬底,并将其转移与键合,是太赫兹片上系统研制过程中的关键环节。首先利用分子束外延(MBE)技术制备出由半绝缘砷化镓、砷化镓缓冲层、砷化铝牺牲层和低温砷化镓层构成的外延片,然后利用盐酸溶液与砷化铝和低温砷化镓反应速度差别较大的原理,将200 nm厚的AlAs牺牲层腐蚀掉,从而得到2 μm厚的低温砷化镓薄膜。为了更加高效并且完整地得到低温砷化镓薄膜,研究了盐酸溶液在不同温度和不同浓度下与AlAs牺牲层的选择性腐蚀速率的关系。给出了低温砷化镓薄膜制备过程中盐酸的最佳体积比浓度和最佳温度,即在73 ℃下13.57%的盐酸溶液中进行砷化铝牺牲层的腐蚀。相比于已有工艺,这种腐蚀方法对实验设备的要求较低并且具有较高的安全性。最后,将单层低温砷化镓薄膜转移键合至硅片上,并制成光电导天线的结构。利用飞秒激光脉冲进行激发探测到太赫兹信号。由此说明,低温砷化镓薄膜的获取、转移与键合工艺能够满足芯片级太赫兹系统的制作要求,这为太赫兹片上系统的进一步研制打下了坚实的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号