首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we disclose the various routes and strategies we had to explore before finally achieving the total synthesis of (-)-exiguolide ((-)-1). Two first types of approaches were set, both relying on the Trost's domino ene-yne coupling/oxa-Michael reaction that we choose for its ability to control the geometry of the methylacrylate-bearing tetrahydropyrane ring B. In our first approach, we expected to assemble the two main fragments (C14-C21 and C1-C13) by creating the C13-C14 bond through a palladium(0)-catalyzed cross-coupling, but this step failed, unfortunately. In the second approach, which was more linear, we created the C16-C17 bond through condensation of a lithium acetylide on a Weinreb amide, and we assembled the C1-C5 and C6-C21 subunits through Trost's domino ene-yne coupling/oxa-Michael reaction. These two approaches served us to design an ameliorated third strategy, which finally led to the total synthesis of (-)-exiguolide.  相似文献   

2.
The asymmetric Diels-Alder reaction between 2-(E-2-acetoxyvinyl)-8-tert-butyl-3,4-dihydronaphthalene (8) and enantiopure (SS)-2-(p-tolylsulfinyl)-1,4-benzoquinone (1) takes place exclusively on the unsubstituted C(5)-C(6) double bond of (SS)-1 with a very high control of the chemo-, regio-, and diastereoselectivity of the process affording tetracyclic sulfinyl derivative 13a possessing five stereogenic centers. The analogue diene 9, lacking the tert-butyl group, gave a less chemoselective reaction (C(2)-C(3)/C(5)-C(6): 60/40) in favor of reaction through the sulfoxide-substituted double bond C(2)-C(3) of 1. Steric effects of the remote tert-butyl group and electronic factors due to the OAc substituent are controlling the process.  相似文献   

3.
Langille NF  Panek JS 《Organic letters》2004,6(18):3203-3206
[reaction: see text] A convergent enantioselective synthesis of the natural product (-)-callystatin A (1) is described. Key features of the synthesis include a lipase-mediated kinetic resolution to install the C5 lactone stereochemistry, a hydrozirconation-based approach to the C8-C9 trisubstituted (Z)-olefin, and a stereoselective cross-coupling of a vinyl dibromide to install the C14-C15 trisubstituted (E)-olefin.  相似文献   

4.
An enantioselective, convergent total synthesis of the antiviral marine natural product (-)-hennoxazole A is completed in 14 steps (longest linear sequence) from commercially available 4-methyloxazole-2-carboxylic acid. Synthesis of the C(1)-C(15) pyran/bisoxazole fragment takes advantage of an aldol-like coupling between a dimethyl acetal and an N-acetylthiazolidinethione for the direct, stereoselective installation of the C(8)-methoxy-bearing stereocenter. A one-pot acetoacetate acylation/decarboxylation/cyclodehydration of another elaborate thiazolidinethione allows for rapid assembly of the pyran-based ring system. Synthesis of the C(15)-C(25) skipped triene side chain fragment makes use of a [2,3]-Wittig-Still rearrangement for efficient installation of the trisubstituted Z-double bond. Key late-stage coupling of the two fragments is effected by deprotonation of the methyl group on the bisoxazole system using lithium diethylamide, followed by alkylation with an allylic bromide side chain segment to form the C(15)-C(16) bond.  相似文献   

5.
An efficient, highly convergent stereocontrolled synthesis of (+)-discodermolide has been achieved with 2.1% overall yield (27 steps longest linear sequence). The absolute stereochemistry of the C1-C6 (12), C7-C14 (13), and C15-C24 (11) subunits was introduced using asymmetric crotylation methodology. Key elements of the synthesis include the use of hydrozirconation-cross-coupling methodology for the construction of C13-C14 (Z)-olefin, acetate aldol reaction to construct the C6-C7 bond and install the C7 stereocenter with high levels of 1,5-anti stereoinduction, and the use of palladium-mediated sp(2)-sp(3) cross-coupling reaction to join the advanced fragments, which assembled the carbon framework of discodermolide.  相似文献   

6.
The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) in 25 linear steps from chiral methylene pyran 13 is described. The key steps involved an inverse electron demand hetero-Diels-Alder reaction between dienophile 13 and diene 12 to construct the 6,6-spiroketal 11 which upon oxidation with dimethyldioxirane and acid catalyzed rearrangement gave the 5,6-spiroketal aldehyde 9. Lithium acetylide addition followed by oxidation/reduction and protective group manipulation provided the reveromycin B spiroketal core 8 which was converted into the reveromycin A (1) derivative 6 in order to confirm the stereochemistry of the spiroketal segment. Introduction of the C1-C10 side chain began with sequential Wittig reactions to form the C8-C9 and C7-C6 bonds, and a tin mediated asymmetric aldol reaction installed the C4 and C5 stereocenters. The final key steps to the target molecule 2 involved a Stille coupling to introduce the C21-C22 bond, succinoylation, selective deprotection, oxidation, and Wittig condensation to form the final C2-C3 bond. Deprotection was effected by TBAF in DMF to afford reveromycin B (2) in 72% yield.  相似文献   

7.
A total synthesis of LL-Z1640-2 (2), a potent and selective kinase inhibitor, has been completed. The key step of the convergent synthesis utilized a late-stage intramolecular Nozaki-Hiyama-Kishi (NHK) reaction to close the macrocycle at the C6′-C7′ bond.  相似文献   

8.
[structures: see text] The highly convergent stereocontrolled total synthesis of (-)-vincamajinine (7), (-)-11-methoxy-17-epivincamajine (9), and the oxygen-bridged (+)-dehydrovoachalotine (22) are described. Key steps in the synthesis of 7 and 9 involved the stereospecific enolate-driven palladium-catalyzed cross-coupling reaction, a Tollens reaction, an acid-assisted intramolecular cyclization to form the C(7)-C(17) quaternary center, and two stereospecific reductions. The efficiency of this strategy is illustrated by the completion of the synthesis of 7 and 9 in 16 [from d-(+)-tryptophan methyl ester 17] and 17 (from the Sch?llkopf chiral auxiliary 27) reaction vessels, respectively. This constitutes the first total synthesis of these indole alkaloids and provides the first regiospecific route to 11-methoxy-substituted ajmaline/vincamajine-related alkaloids. The synthesis of 22 required a novel DDQ-mediated cyclization to furnish the C(6)-O(17) bond, executed in stereospecific fashion. Completion of these syntheses illustrates a concise and versatile strategy for the synthesis of vincamajine-related alkaloids, which has also been employed to prepare the related compounds quebrachidine diol (53), vincamajine diol (56), and vincarinol (59).  相似文献   

9.
[reaction: see text] The key fragment (2a or 2b) in a total synthesis of the cytotoxic macrolide (-)-amphidinolide K (1) has been achieved from synthons C9-C14 (3) and C15-C22 (4), which have both been prepared from glutamic acid in good overall yields.  相似文献   

10.
Gille A  Hiersemann M 《Organic letters》2010,12(22):5258-5261
The convergent enantioselective synthesis of a protected C1-C18 building block for the total synthesis of (-)-lytophilippine A was achieved. A catalytic asymmetric Gosteli-Claisen rearrangement and an Evans aldol reaction served as key C/C-connecting transformations during the assembling of the C1-C7 subunit (10 steps from 4, 29%). The synthesis of the C8-C18 segment was achieved utilizing d-galactose as inexpensive ex-chiral-pool starting material (15 steps, 15%). The merger of the subunits was accomplished by a remarkably efficient sequence consisting of esterification and ring-closing metathesis (five steps, 56%).  相似文献   

11.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

12.
Luo S  Zificsak CA  Hsung RP 《Organic letters》2003,5(24):4709-4712
[reaction: see text] A 19-step stereoselective total synthesis of (+/-)-tangutorine is described here. The total synthesis features an intramolecular aza-[3 + 3] formal cycloaddition strategy and also a Heck coupling for constructing the C2-C3 bond. This work provides a novel approach toward the indoloquinolizidine family of alkaloids.  相似文献   

13.
The oxidative addition of one equivalent of [Cp2V] (4) to the tetrayne ligand tBuC triple bond CC triple bond CC triple bond CC triple bond CtBu (5) gives the monometallic complex [Cp2V(3-4eta-tBuC triple bond C-C2-C triple bond CC triple bond CtBu)] (7). Compound 7 reacts further with a second equivalent of [Cp2V] to give the dimetallic complex [(Cp2V)2(1-2eta:7-8eta-tBuC2-C triple bond CC triple bond C-C2tBu)] (8), which involves a shift of the first coordinated [Cp2V] unit from the internal C3-C4 to the external C1-C2 positions on the alkynyl ligand. Compound 8 is also directly obtained by the addition of two equivalents of [Cp2V] to 5. Reversibly, reaction of 8 with 5 leads to 7. This exchange reaction between 7 and 8 by adding successively 5 and 4 has been monitored by EPR spectroscopy. By contrast, the oxidative addition of one or two equivalents of [Cp2V] to the tetrayne ligand PhC triple bond CC triple bond CC triple bond CC triple bond CPh (6) gives the homodimetallic complex [(Cp2V)2(1-2eta:7-8eta-PhC2-CC triple bond CC triple bond C-C2-Ph)] (9). Both monometallic and dimetallic complexes 7, 8, and 9 have been characterized by X-ray diffraction. Magnetic moment measurements for 8 and 9 from 300 to 4 K indicated a weak antiferromagnetic J exchange coupling of -12.5 and -4.1 cm(-1), respectively.  相似文献   

14.
Diels-Alder reactions of (SS)-2-(2'-methoxynaphthylsulfinyl)-1, 4-benzoquinone (1b), 2-(p-methoxyphenylsulfinyl)-1,4-benzoquinone (1c), and 2-(p-nitrophenylsulfinyl)-1,4-benzoquinone (1d) with cyclopentadiene are reported. These cycloadditions allowed the highly chemo- and stereoselective formation of both diastereoisomeric endo-adducts resulting from reaction on the unsubstituted double bond C(5)-C(6) of quinones working under thermal and Eu(fod)(3)- or BF(3).OEt(2)-catalyzed conditions. The synthesis of endo-adduct [4aS,5S,8R,8aR,SS]-9d resulting from cycloaddition on the substituted C(2)-C(3) double bond was achieved in a chemo- and diastereoselective way from quinone 1d in the presence of ZnBr(2). The reactivity and selectivity of the process proved to be dependent on the electron density of the arylsulfinyl group.  相似文献   

15.
Convergent total syntheses of the potent cytotoxins (+)-tedanolide (1) and (+)-13-deoxytedanolide (2) are described. The carbon framework of these compounds was assembled via a stereoselective aldol reaction that unifies the C(1)-C(12) ketone fragment 5 with a C(13)-C(23) aldehyde fragment 6 (for 13-deoxytedanolide) or 52 (for tedanolide). Multiple obstacles were encountered en route to (+)-1 and (+)-2 that required very careful selection and orchestration of the stereochemistry and functionality of key intermediates. Chief among these issues was the remarkable stability and lack of reactivity of hemiketals 33b and 34 that prevented the tedanolide synthesis from being completed from aldol 4. Key to the successful completion of the tedanolide synthesis was the observation that the 13-deoxy hemiketal 36 could be oxidized to C(11,15)-diketone 38 en route to 13-deoxytedanolide. This led to the decision to pursue the tedanolide synthesis via C(15)-(S)-epimers, since this stereochemical change would destabilize the hemiketal that plagued the attempted synthesis of tedanolide via C(15)-(R) intermediates. However, use of C(15)-(S)-configured intermediates required that the side-chain epoxide be introduced very late in the synthesis, owing to the ease with which the C(15)-(S)-OH cyclized onto the epoxide of intermediate 50.  相似文献   

16.
The synthesis of the C15-C26 fragment of (-)-dictyostatin is reported in 10 steps and 28% overall yield. The key steps are the two stereoselective sulfoxide-directed processes: a Reformatsky-type reaction and a β-keto sulfoxide reduction.  相似文献   

17.
The stirring of [ortho-(HC[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] in benzene affords [6,9-{ortho-(HC[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 1 in 93% yield. In the solid state, 1 has an extended complex three-dimensional structure involving intramolecular dihydrogen bonding, which accounts for its low solubility. Thermolysis of 1 gives the known [1-(ortho-C(5)H(4)N)-1,2-closo-C(2)B(10)H(11)] 2 (13%), together with new [micro-5(N),6(C)-(NC(5)H(4)-ortho-CH(2))-nido-6-CB(9)H(10)] 3 (0.4%), [micro-7(C),8(N)-(NC(5)H(4)-ortho-CH(2))-nido-7-CB(10)H(11)] (0.4%) , 4 binuclear [endo-6'-(closo-1,2-C(2)B(10)H(10))-micro-(1(C),exo-6'(N))-(ortho-C(5)H(4)N)-micro-(exo-8'(C),exo-9'(N))-(ortho-(CH(2)CH(2))-C(5)H(4)N)-arachno-B(10)H(10)] (0.5%) 5, and [exo-6(C)-endo-6(N)-(ortho-(CH[double bond]CH)-C(5)H(4)N)-exo-9(N)-(ortho-(HC[triple bond]C)-C(5)H(4)N)-arachno-B(10)H(11)] 6. An improved solvent-free route to 2 is also presented. This set of compounds features an increasing cluster incorporation of the ethynyl moiety, initially by an effective internal hydroboration, affording an arachno to nido and then a nido to arachno:closo sequence of cluster geometry. An alternative low-temperature route to internal hydroboration is demonstrated in the room temperature reaction of [closo-B(11)H(11)][N(n)Bu(4)](2) with CF(3)COOH and [ortho-(HC[triple bond]C)-C(5)H(4)N], which gives [micro-1(C),2(B)-[ortho-C(5)H(4)N-CH(2)]-closo-1-CB(11)H(10)] 7 (40%) in which one carbon atom is incorporated into the cluster; a similar reaction with [ortho-(N[triple bond]C)-C(5)H(4)N] affords [N(n)Bu(4)][7-(ortho-N[triple bond]C-C(5)H(4)N)-nido-B(11)H(12)], 8 (68%) and stirring [ortho-(N[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] quantitatively affords the cyano analogue of 1, [6,9-{ortho-(N[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 9. All compounds were characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy.  相似文献   

18.
A convergent asymmetric total synthesis of pironetin (1), a polyketide with immunosuppressive, antitumor, and plant-growth regulating activities is described. The synthesis was realized by coupling between the C(8)-C(14) 2 and C(7)-C(2) 15 fragments, respectively, by using a Mukaiyama-aldol reaction. The stereogenic centers of each fragment were generated by employing the SAMP/RAMP hydrazone (SAMP=(S)-1-amino-2-methoxymethylpyrrolidine, RAMP=(R)-1-amino-2-methoxymethylpyrrolidine) methodology as a key step. An asymmetric alpha-alkylation of diethyl ketone permitted the introduction of the C(10) stereogenic center of 2, whereas the stereocenters C(4) and C(5) of 15 were installed by an asymmetric aldol reaction. Finally, the formation of the alpha,beta-unsaturated delta-lactone was achieved by ring-closing metathesis in the presence of catalytic amounts of titanium tetraisopropoxide.  相似文献   

19.
A novel interpretation of the chameleonic and centauric models for the Cope rearrangements of 1,5-hexadiene (A) and different cyano derivatives (B: 2,5-dicyano, C: 1,3,4,6-tetracyano, and D: 1,3,5-tricyano) is presented by using the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) on the reaction paths calculated at the B3LYP/6-31G(d,p) level. The progress of the reaction is monitorized by the changes of the ELF structural stability domains (SSD), each being change controlled by a turning point derived from CT. The reaction mechanism of the parent reaction A is characterized by nine ELF SSDs. All processes occur in the vicinity of the transition structure and corresponding to a concerted formation/breaking of C(1)-C(6) and C(3)-C(4) bonds, respectively, together with an accumulation of charge density onto C(2) and C(5) atoms. Reaction B presents the same number of ELF SSDs as A, but a different order appears; the presence of 2,5-dicyano substituents favors the formation of C(1)-C(6) bonds over the breaking of C(3)-C(4) bond process, changing the reaction mechanism from a concerted towards a stepwise, via a cyclohexane biradical intermediate. On the other side, reaction C presents the same type of turning points but two ELF SSD less than A or B; there is an enhancement of the C(3)-C(4) bond breaking process at an earlier stage of the reaction by delocalizing the electrons from the C(3)-C(4) bond among the cyano groups. In the case of competitive effects of cyano subsituents on each moiety, as it is for reaction D, seven different ELF SSDs have been identified separated by eight turning points (two of them occur simultaneously). Both processes, formation/breaking of C(1)-C(6) and C(3)-C(4) bonds, are slightly favored with respect to the parent reaction (A), and the TS presents mixed electronic features of both B and C. The employed methodology provides theoretical support for the centauric nature (half-allyl, half-radical) for the TS of D.  相似文献   

20.
Lira R  Roush WR 《Organic letters》2007,9(3):533-536
[reaction: see text] A stereoselective synthesis of the C(1)-C(19) fragment of tetrafibricin has been accomplished via a highly diastereoselective double allylboration reaction of 6-8 and an iodonium ion promoted urethane cyclization for the installation of the C(15) alkoxy function in 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号