首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We have investigated the relation among ρT characteristics, superconductivity, annealing conditions and the crystallinity of polycrystalline (In2O3)1−x–(ZnO)x films. We annealed as-grown amorphous films in air by changing annealing temperature and time. It is found that the films annealed at 200 °C or 300 °C for a time over 0.5 h shows the superconductivity. Transition temperature Tc and the carrier density n are Tc < 3.3 K and n ≈ 1025–1026 m−3, respectively. Investigations for films with x = 0.01 annealed at 200 °C have revealed that the Tc, n and crystallinity depend systematically on annealing time. Further, we consider that there is a suitable annealing time for sharp resistive transition because the transition width becomes wider with longer annealing times. We studied the upper critical magnetic field Hc2(T) for the film with different annealing time. From the slope of dHc2/dT for all films, we have obtained the resistivity ρ dependence of the coherence length ξ(0) at T = 0 K.  相似文献   

2.
Effects of ZnO addition on electrical properties and low-temperature sintering of BiFeO3-modified Pb(Zr,Ti)O3–Pb(Fe2/3W1/3)O3–Pb(Mn1/3Nb2/3)O3 were investigated. The investigations revealed that the sintering temperature can be decreased to 950 °C, and the favorable properties were obtained with 0.10 wt% ZnO added ceramics. The electrical properties were as follows: d33 = 313 pC/N, Kp = 0.56, tan δ = 0.0053, εr = 1407 and Tc = 295 °C, which showed that this system was a promising material for the multilayer devices application.  相似文献   

3.
The metal–ferrite composites FexCo1−x/CoyFe1−yFe2O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 under hydrothermal condition. The size of the particles of the composites decreases as the [KOH] decreasing. The composites are measured by TEM and it can be deduced that when [KOH] = 0.1, the size of the alloy body-centered cubic (BCC) in composites is 20 ± 7 nm, the size of the Cobalt ferrite (spinel) is 170 ± 50 nm. The maximal value of the saturation magnetization (Ms) of the composite is about 100.14 emu/g, which is synthesized under Co (II)/Fe (II) = 0.05, [KOH] = 1 N, T = 150 °C and t = 3 h. The value of Hc of the composite synthesized under Co (II)/Fe (II) = 0.5, t = 3 h, T = 150 °C and [KOH] = 10.2 mol/L is about 2878.19 Oe. The Fe–Co alloy is synthesized through a reduction reaction of the composites in a flowing gaseous mixture. There is a maximal value (302.9 emu/g) of the Ms for the alloys generated at 1000 °C, which is the Co0.412Fe0.588 alloy.  相似文献   

4.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

5.
Sputtered Cr/n-GaAs Schottky diodes have been prepared and annealed at 200 and 400 °C. The current–voltage (I–V) characteristics of the as-deposited and annealed diodes have been measured in the temperature range of 60–320 K with steps of 20 K. The effect of thermal annealing on the temperature-dependent I–V characteristics of the diodes has been investigated experimentally. The ideality factor and barrier height (BH) values for 400 °C annealed diode approximately remain unchanged from 120 to 320 K, and those of the as-deposited sample from 160 to 320 K. The departures from ideality at low temperatures have been ascribed to the lateral fluctuations of the BH. The BH values of 0.61 and 0.74 eV for the as-deposited and 400 °C annealed diodes were obtained at room temperature, respectively. A Richardson constant value of 9.83 A cm−2 K−2 for 400 °C annealed Schottky diode, which is in close agreement with the known value of 8.16 A cm−2 K−2 for n-type GaAs. Furthermore, T0 anomaly values of 15.52, 10.68 and 5.35 for the as-deposited and 200 and 400 °C annealed diodes were obtained from the nT versus T plots. Thus, it has been seen that the interface structure and quality improve by the thermal annealing at 400 °C.  相似文献   

6.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

7.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.  相似文献   

8.
Zn1−xMnxFe2O4 (x = 0, 0.2 and 0.4) nanomaterials were synthesized by sol–gel citrate method and studied structural and gas sensing properties. The structural characteristics of synthesized nanomaterials were studied by X-ray diffraction measurement (XRD) and transmission electron microscope (TEM). The results revealed that the particle size is in the range of 30–35 nm for Mn–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like LPG, CH4, CO and ethanol and it is observed that Mn–Zn ferrite shows high response to ethanol at relatively lower operating temperature. The Zn0.6Mn0.4Fe2O4 nanomaterial shows better sensitivity towards ethanol at an operating temperature 300 °C. Incorporation of 1.5 wt.% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 °C to 230 °C for ethanol sensor. The response time of 200 ppm ethanol in air is about 10s.  相似文献   

9.
The oxygen flux through La1.9Sr0.1NiO4 + δ has been measured as a function of oxygen activity gradient and temperature (750–1000 °C). The oxygen nonstoichiometry was determined by thermogravimetry in the temperature range of 400–1000 °C and oxygen partial pressures of 0.0002–1 atm. The total conductivity was measured over a similar range of conditions. The oxide ion partial conductivity derived from the oxygen flux data is approximately 4 orders of magnitude lower than the total, mainly p-type electronic conductivity. The defect structure was derived based on the data. Combining the oxygen flux and oxygen nonstoichiometry, the self diffusion coefficient of oxygen interstitials was evaluated.  相似文献   

10.
This paper reports a neutron powder diffraction study of CaMn2Sb2 in the temperature range of 20–300 K. Collinear long-range antiferromagnetic order of manganese ions occurs below 85 K, where a transition is observed in the dc magnetic susceptibility measured with a single crystal. Short-range magnetic order, characterized by a broad diffraction peak corresponding to a d-spacing of approximately 4 Å (2θ≈22°), is also observed above 20 K. The long-range antiferromagnetic order is indexed by the chemical unit cell, indicating a propagation vector k=(0 0 0), with a refined magnetic moment of 3.38 μB at 20 K. Two possible magnetic models have been identified, which differ in spin orientation for the two manganese ions with respect to the ab plane. The model with spins oriented at a 25±2° angle relative to the ab plane gives an improved fit compared to the other model in which the spins are constrained to the ab plane. Representational analysis can account for a model involving a c-axis component only by the mixing of two irreducible representations.  相似文献   

11.
We fabricated nano-carbon (NC) doped MgB2 bulks using an in situ process in order to improve the critical current density (Jc) under a high magnetic field and evaluated the correlated effects of the doped carbon content and sintering temperature on the phase formation, microstructure and critical properties. MgB2−xCx bulks with x = 0 and 0.05 were fabricated by pressing the powder into pellets and sintering at 800 °C, 900 °C, or 1000 °C for 30 min.We observed that NC was an effective dopant for MgB2 and that part of it was incorporated into the MgB2 while the other part remained (undoped), which reduced the grain size. The actual C content was estimated to be 68–90% of the nominal content. The NC doped samples exhibited lower Tc values and better Jc(B) behavior than the undoped samples. The doped sample sintered at 900 °C showed the highest Jc value due to its high doping level, small amount of second phase, and fine grains. On the other hand, the Jc was decreased at a sintering temperature of 1000 °C as a result of the formation of MgB4 phase.  相似文献   

12.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

13.
Proton-magnetic-resonance measurements have been carried out on juvenile porcine peripheral lung parenchyma. The free-induction-decay signal contained a motionally restricted component which decayed in a few tens of microseconds and a mobile component with aT2time greater than 1 ms. The average second moment,M2, for the motionally restricted signal was found to be 3.42 ± (0.25) × 109s−2. TheT2distribution for the mobile signal consistently showed four resolvable components ofT2range: 2–6, 10–40, 80–110, and 190–400 ms. The 2–6 ms component was present in a fully dehydrated preparation and was therefore assigned to a nonaqueous lung constituent. The motionally restricted FID component had aT1= 0.772 ± 0.11 s and the mobile component had aT1= 0.967 ± 0.02 s. The hydrogen content per unit mass for lung parenchyma and water were estimated in two ways: (1) on the basis of chemical content and (2) on the basis of comparison of restricted and mobile signals to the gravimetric (G) water content for a lung sample studied at a wide range of water contents. Lung wet/dry weight ratios were estimated from the free-induction decays and compared with gravimetric measurement. The ratio of (wet/dry)NMR/(wet/dry)Gwas 1.00 ± 0.08 and 1.00 ± 0.05 for the two methods of estimation.  相似文献   

14.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

15.
Ba0.9Sr0.1TiO3 (BST) thin films were deposited on fused quartz and Pt/TiN/Si3N4/Si substrates by radio frequency magnetron sputtering technique. Microstructure and chemical bonding states of the BST films annealed at 700 °C were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and Raman spectrum. Optical constants including refractive indices, extinction coefficients and bandgap energies of the as-deposited BST film and the BST films annealed at 650, 700 and 750 °C, respectively, were determined from transmittance spectra by envelope method and Tauc relation. Dielectric constant and remnant polarization for the BST films increase with increasing annealing temperature. Leakage current density-applied voltage (JV) data indicate that the dominant conduction mechanism for all the BST capacitors is the interface-controlled Schottky emission under the conditions of 14 V < V < 30 V and −30 V < V < −14 V. Furthermore, the inequipotential JV characteristics for the BST films annealed at various temperatures are mainly attributed to the combined effects of the different thermal histories, relaxed stresses and strains, and varied Schottky barrier heights in the BST/Pt and Pt/BST interfaces.  相似文献   

16.
A commercially available powder of MgB2 is used as starting material for the examination of the influence of the annealing temperature on the properties of this intermediate-Tc superconductor. We performed scanning electron microscopy (SEM) and Hall ac-susceptibility measurements as a function of temperature and ac-field amplitude on samples annealed at 650, 750, 850 and 950 °C. The imaginary part of ac-susceptibility measurements is used to calculate both the inter-granular critical current density, Jc(Tp) and density of pinning force, αj(0). It was observed that all Tc, Jc(Tp) and αj(0) exhibit a non-monotonic behavior on the annealing temperature range studied in this work. Tc is measured to be 39.85±0.02 K and Jc(Tp) is estimated to be as high as 60 A/cm2 at 39.2 K for the sample annealed at 850 °C. The peak temperature, Tp, in the imaginary part of the ac-susceptibility curves shifts to lower temperatures with both decreasing the annealing temperature and increasing the amplitude of the ac-magnetic fields. A comparison of the experimental ac-susceptibility data with theoretical critical-state models that are currently available is performed. SEM investigations showed that the grain size increases, and the grain connectivity improves when the annealing temperature increases up to 850 °C. The possible reasons for the observed changes in transport, microstructure and magnetic properties due to annealing temperature are discussed.  相似文献   

17.
We present a theoretical study of the collisions of atomic oxygen with O-precovered β-cristobalite (1 0 0) surface. We have constructed a multidimensional potential energy surface for the O2/β-cristobalite (1 0 0) system based mainly on a dense grid of density functional theory points by using the interpolation corrugation-reducing procedure. Classical trajectories have been computed for quasithermal (100–1500 K) and state-specific (e.g., collision energies between 0.01 and 4 eV) conditions of reactants for different O incident angles (θv). Atomic sticking and O2(adsorbed) formation are the main processes, although atomic reflection and Eley–Rideal (ER) reaction (i.e., O2 gas) are also significant, depending their reaction probabilities on the O incident angle. ER reaction is enhanced by temperature increase, with an activation energy derived from the atomic recombination coefficient (γO(θv = 0°, T)) equal to 0.24 ± 0.02 eV within the 500–1500 K range, in close agreement with experimental data. Calculated γO(θv = 0°, T) values compare quite well with available experimental γO(T) although a more accurate calculation is proposed. Chemical energy accommodation coefficient βO(T) is also discussed as a function of ER and other competitive contributions.  相似文献   

18.
Melt-spun ribbons with composition Sm2+Y(Co0.8Fe0.1Mn0.1)17BX (X=0–1.0 and Y=0–0.2) were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 500–800°C for 2.5–60 min. Our results show that all the ribbons annealed up to 800°C are composed of a TbCu7-type phase as the main phase. The highest coercivity of 8.7 kOe is obtained in a Sm-rich sample with composition Sm2.2(Co0.8Fe0.1Mn0.1)17 annealed at 750°C for 5 min. It is found that these magnets show a very promising high-temperature performance – much better than those of typical sintered 2 : 17 magnets.  相似文献   

19.
CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system changed from fluorite (F)-type to pyrochlore (P)-type structure when the ionic radius ratios, r(Ca2+–RE3+)av/r(Zr4+–Nb5+)av were larger than 1.34. Thus, the La, Nd, and Sm compounds have a cubic P-type structure and the Gd and Y ones have a defect F-type structure. The electrical conductivity was measured using complex-plane impedance analysis over a wide temperature (300–750 °C) and frequency (1 Hz–1 MHz) ranges. The conductivity relaxation phenomenon was observed in these compounds and the relaxation frequencies were found to show Arrhenius-type behavior and activation energies were in good agreement with those obtained from high temperature conductivity plots. These results support the idea that the relaxation process and the conductivity have the same origin. The ionic conductivity of CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system showed the maximum at the phase boundary between the F-type and P-type phases. On the other hand, the activation energy for the conduction decreased in the F-type phase and increased in the P-type phase with increasing ionic radius ratio. Among the prepared compounds, CaGdZrNbO7 showed the highest ionic conductivity of 9.47 × 10− 3 S/cm at 750 °C which was about twice as high as that observed in Gd2Zr2O7 (4.2 × 10− 3 S/cm at 800 °C). The grain morphology observation by scanning electron microscope (SEM) showed well-sintered grains. AC impedance measurements in various atmospheres further indicated that they are predominantly oxide ion conductors at elevated temperatures (> 700 °C).  相似文献   

20.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号