首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
杨丹  祝艳 《催化学报》2021,42(2):245-250,后插1-后插5
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响...  相似文献   

2.
We report the results of a theoretical study of neutral, anionic, and cationic Ga(n)On clusters (n = 4-7), focusing on their ground-state configurations, stability, and electronic properties. The structural motif of these small gallium oxide clusters appears to be a rhombus or a hexagonal ring with alternate gallium and oxygen atoms. With the increase in the cluster size from Ga4O4 to Ga7O7, the ground-state configurations show a transition from planar to quasi-planar to three-dimensional structure that maximizes the number of ionic metal-oxygen bonds in the cluster. The ionization-induced distortions in the ground state of the respective neutral clusters are small. However, the nature of the LUMO orbital of the neutral isomers is found to be a key factor in determining the ordering of the low-lying isomers of the corresponding anionic clusters. A sequential addition of a GaO unit to the GaO monomer initially increases the binding energy, though values of the ionization potential and the electron affinity do not show any systematic variation in these clusters.  相似文献   

3.
A systematic quantum chemical investigation on the geometric, energetic, electronic and magnetic properties of vanadium-copper nanoalloy clusters (n = 1–12) is performed by using BPW91/LanL2DZ calculations. The calculated results show that the structural evolution of Cu n V clusters favors a compact and icosahedral growth pattern and V atom favors occupying the most highly coordinated position. Energetic properties show that doping of one V atom contributes to strengthening the stability of the copper clusters with the growth of the clusters. The stacking mode of clusters apparently has a more important effect on the clusters stability than the electronic structure. However, electronic structures have some contribution to the stability of Cu n V clusters as well. The electronic properties of Cu n V are analyzed through vertical ionization potential (VIP), vertical electron affinity (VEA) and chemical hardness (η). The magnetism calculations show that when doping V atom in copper clusters, the cluster system generate a very large magnetic moment and its contribution mainly comes from the 3d orbital of doping-V atom.  相似文献   

4.
Experimental innovations have allowed for the application of rather conventional spectroscopic molecular beam techniques to the study of electronic properties of molecular beam isolated neutral aggregates. Recent results for mercury clusters obtained by photoelectron spectroscopy and photoabsorption spectroscopy will be discussed. The experimentally available data for mercury clusters indicate a size dependent gradual evolution of metallic bulk properties in the approximate size region between 13 and 70 atoms.  相似文献   

5.
Doping transition metal atom is known as an effective approach to stabilize an atomic cluster and modify its structure and electronic properties. We herein report the effect of molybdenum doping on the structural evolution of medium-sized boron clusters. The lowest-energy structures of MoBn (n?=?10, 12, 14, 16, 18, 20, 22, 24) clusters are globally searched using genetic algorithm combined with density functional theory calculations. We found that Mo doping has significantly affected the grow behaviors of Bn clusters, leading to a structural evolution from bowl-like to tubular and finally endohedral cage. The size-dependent binding energy, HOMO–LUMO gap, vertical ionization potential and vertical electron affinity show that MoB12, MoB22 and MoB24 clusters have relatively higher stability and enhanced chemical inertness. More interestingly, the endohedral MoB22 cage is identified as an elegant superatom, which satisfies 18-electron closed shell configuration well.  相似文献   

6.
The electronic and structural properties of ReO5 and ReO5 clusters are investigated using density functional theory (DFT) calculations. The lowest energy structures for both the anionic and neutral clusters are determined, and the corresponding photoelectron spectrum is simulated. Our results show that ReO5 can be described as an unusual peroxo molecule, Re(O)3(η2-O2) , while ReO5 is found to be exhibiting the O2 o radical character. Molecular orbital analyses and spin density analyses are performed to elucidate the chemical bonding and the electronic and structural properties in these two rhenium oxide clusters.  相似文献   

7.
The structural, electronic, and magnetic properties of iridium clusters with sizes of n = 2-15 are investigated by employing the generalized gradient approximation of density functional theory. Simple cube evolution pattern is revealed for Ir(2-15) clusters, as predicted by previous reports. It is remarkable that for Ir(10), Ir(11) clusters, new generated isomers with higher stabilities relative to those reported in previous studies are obtained. The even-sized clusters are more stable than the odd-sized species. The Ir-Ir bonds in the cubic Ir(8) and Ir(12) clusters, which are considered as the basic units in the structural evolution present covalent character. Starting from n = 8, the magnetic moments of Ir(n) clusters decrease sharply. The moments of magnetic clusters show 5d characters. The reactive site selectivity of studied clusters with n = 5-15 is analyzed with condensed Fukui function. The capped atoms in certain clusters (Ir(9), Ir(10), Ir(11), and Ir(13)) generally show extraordinary activity for both nucleophilic and electrophilic attack.  相似文献   

8.
We present the results of our theoretical calculations on structural and electronic properties of ligand-free Zn(n)S(n) [with n ranging from 4 to 104 (0.8-2.0-nm diameter)] clusters as a function of size of the clusters. We have optimized the structure whereby our initial structures are spherical parts of either zinc-blende or wurtzite structure. We have also considered some hollow bubblelike structures. The calculations are performed by using a parametrized linear combination of atomic orbitals-density-functional theory-local-density approximation-tight-binding method. We have focused on the variation of radial distribution function, Mulliken populations, electronic energy levels, band gap, and stability as a function of size for both zinc-blende and wurtzite-derived ZnS clusters. We have also reported the results of some nonstoichiometric Zn(m)S(n) (with m+n=47, 99, 177) clusters of zinc-blende modification.  相似文献   

9.
10.
Recent developments in cluster synthesis have produced many high nuclearity metal clusters of discretesize andshape approaching that of small particles. Some of these clusters have metal arrangements resemblingfragments of metallic lattices and thus may be considered as aminiature bulk. Some are related to the quasicrystalline phase. Yet others have little or no structural features in common with that of the bulk. These metal clusters of definitivesize andshape provide an opportunity for the study of the evolution of band structure fromatomic tomolecular to thebulk. The focus of this review is on the unusual structures and properties of well-defined high nuclearity metal clusters and their possible relations or variant to the bulk state. Specifically, interesting electronic, optical, and magnetic properties of metal clusters in the quantum-size regime are described. Structural systematics of high nuclearity metal clusters, ranging from thecluster-of-clusters to thelayer-by-layer growth sequence, are discussed. It is hoped that further studies of the structures and properties of large metal cluster compounds of discretesize andshape will shed light on how, when, and why metallic or other bulk behavior begins and ends.  相似文献   

11.
We present a theoretical study of the structural evolution of small minimum energy platinum clusters, using density functional theory (DFT). Three growth pathways were identified. At the subnanoscale, clusters with triangular packing are energetically most favorable. At a cluster size of approximately n = 19, a structural transition from triangular clusters to icosahedral clusters occurs. A less energetically favorable transition from triangular clusters to fcc‐like clusters takes place at around n = 38. Ionization potentials, electron affinities, and magnetic moments of the triangular clusters were also calculated. Understanding the structures and properties will facilitate studies of the chemical reactivity of Pt nanoclusters toward small molecules. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
13.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

14.
Excitation and decay processes of helium clusters are investigated with fluorescence methods. The results differ remarkably from that obtained for the heavier rare gas clusters. They are discussed in view of the unusual structural and electronic properties of helium.  相似文献   

15.
The static and dynamic polarizabilities for the lowest-energy structures of pure aluminum clusters up to 31 atoms have been investigated systematically within the framework of density functional theory. The size evolution of several electronic properties such as ionization potential, electron affinity, the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital, and chemical hardness have also been discussed for aluminum clusters. Our primary focus in this article, however, has been upon the study of polarizability of aluminum clusters, although we also looked at the role of other electronic properties. From the energetics point of view, the relative stability of aluminum clusters at different sizes is studied in terms of the calculated second-order difference in the total energy of cluster and fragmentation energy, exhibiting that the magic numbers of stabilities are n = 7, 13, and 20. Moreover, the minimum polarizability principle is used to characterize the stability of aluminum clusters. The results show that polarizabilities and electronic properties can reflect obviously the stability of clusters. Electronically, the size dependence of ionization potential and electron affinity of clusters is determined. On the basis of the Wood and Perdew model these quantities converge asymptotically to the value of the bulk aluminum work function.  相似文献   

16.
采用密度泛函理论研究了InnAsn (n≤90)管状团簇以及单壁InAs纳米管的几何结构、稳定性和电子性质. 小团簇InnAsn (n=1-3)基态结构和电子性质的计算结果与已有报道相一致. 当n≥4时优化得到了一族稳定的管状团簇, 其结构基元(In原子与As原子交替排列的四元环和六元环结构)满足共同的衍化通式. 团簇的平均结合能表明横截面为八个原子的管状团簇稳定性最好. 管状团簇前线轨道随尺寸的变化规律有效地解释了一维稳定管状团簇的生长原因, 同时也说明了实验上之所以能合成InAs纳米管的微观机理. 此外, 研究结果表明通过管状团簇的有效组装可得到宽带隙的InAs半导体单壁纳米管.  相似文献   

17.
We present approximate pseudopotential quantum-mechanical calculations of the excess electron states of equilibrated neutral water clusters sampled by classical molecular dynamics simulations. The internal energy of the clusters are representative of those present at temperatures of 200 and 300 K. Correlated electronic structure calculations are used to validate the pseudopotential for this purpose. We find that the neutral clusters support localized, bound excess electron ground states in about 50% of the configurations for the smallest cluster size studied (n = 20), and in almost all configurations for larger clusters (n > 66). The state is always exterior to the molecular frame, forming typically a diffuse surface state. Both cluster size and temperature dependence of energetic and structural properties of the clusters and the electron distribution are explored. We show that the stabilization of the electron is strongly correlated with the preexisting instantaneous dipole moment of the neutral clusters, and its ground state energy is reflected in the electronic radius. The findings are consistent with electron attachment via an initial surface state. The hypothetical spectral dynamics following such attachment is also discussed.  相似文献   

18.
Determinations of the lowest energy structures and electronic properties of MgBen (n=2-12) clusters werecarried out by using density-functional theory. It was found that MgBe3 and MgBe9 clusters with higherbinding energy and larger HOMO-LUMO gap are more stable than the neighboring clusters. The electronicproperties from van der Waals to covalent and bulk metallic behavior in MgBen (n=2-12) clusters arediscussed with the evolution of the size, and the data indicates Magnesium-doped Beryllium clusters alreadyearly appear some metallic-like features than host Ben clusters. By analyzing electronic properties of MgBen(n=2-12) clusters, it can be concluded that Mg-doped reduces the stabilities of Be clusters.  相似文献   

19.
Lu Y  Chen W 《Chemical Society reviews》2012,41(9):3594-3623
Sub-nanometre sized metal clusters, with dimensions between metal atoms and nanoparticles, have attracted more and more attention due to their unique electronic structures and the subsequent unusual physical and chemical properties. However, the tiny size of the metal clusters brings the difficulty of their synthesis compared to the easier preparation of large nanoparticles. Up to now various synthetic techniques and routes have been successfully applied to the preparation of sub-nanometre clusters. Among the metals, gold clusters, especially the alkanethiolate monolayer protected clusters (MPCs), have been extensively investigated during the past decades. In recent years, silver and copper nanoclusters have also attracted enormous interest mainly due to their excellent photoluminescent properties. Meanwhile, more structural characteristics, particular optical, catalytic, electronic and magnetic properties and the related technical applications of the metal nanoclusters have been discovered in recent years. In this critical review, recent advances in sub-nanometre sized metal clusters (Au, Ag, Cu, etc.) including the synthetic techniques, structural characterizations, novel physical, chemical and optical properties and their potential applications are discussed in detail. We finally give a brief outlook on the future development of metal nanoclusters from the viewpoint of controlled synthesis and their potential applications.  相似文献   

20.
To investigate the electronic structure and magnetic properties of manganese oxide clusters, we carried out first-principles electronic structure calculations for small MnO clusters. Among various structural and magnetic configurations of the clusters, the bulklike [111]-antiferromagnetic ordering is found to be favored energetically, while the surface atoms of the clusters exhibit interesting electronic and magnetic characteristics which are different from their bulk ones. The distinct features of the surface atoms are mainly attributed to the reduction of Mn coordination numbers and the bond-length contractions in the clusters, which may serve as a key factor for the understanding of physical and chemical properties of magnetic oxide nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号