首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the preparation of ultracold atomic clouds in a dilution refrigerator. The closed-cycle 3He/4He cryostat was custom made to provide optical access for laser cooling, optical manipulation and detection of atoms. We show that the cryostat meets the requirements for cold atom experiments, specifically in terms of operating a magneto-optical trap, magnetic traps and magnetic transport under ultrahigh vacuum conditions. The presented system is a step toward the creation of a quantum hybrid system combining ultracold atoms and solid-state quantum devices.  相似文献   

2.
We present a surface trap which enables the study of coherent interactions between ultracold atoms and evanescent waves. The trap combines a magnetic Joffe trap with a repulsive evanescent dipole potential. Exploiting the advantages of both approaches this technique improves recent surfaces traps, which are based either on magnetic or optical traps alone. On the one hand, the position of the magnetic trap can be controlled with high precision which makes it possible to move ultracold atoms to the surface of a glass prism or to withdraw the atoms from the surface in a controlled way. On the other hand, the optical potential of the evanescent wave partially compensates for strong attractive surface forces and generates a potential barrier at only a few hundred nanometers from the surface. This barrier prevents the surface potentials from limiting the trap depth of the magnetic trap. The surface trap is probed with 87Rb Bose–Einstein condensates (BECs), which are stably positioned at distances from the surfaces below one micrometer.  相似文献   

3.
We discuss the properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap being commonly used in ultracold atomic physics experiments. The Hamiltonian is derived, and it is demonstrated how tight traps alter the coupling of the atom to the magnetic field. We solve the underlying Schr?dinger equation of the system within a given n manifold and show that for a sufficiently large Ioffe field strength the 2n;{2}-dimensional system of coupled Schr?dinger equations decays into several decoupled multicomponent equations governing the center of mass motion. An analysis of the fully quantized center of mass and electronic states is undertaken. In particular, we discuss the situation of tight center of mass confinement outlining the procedure to generate a low-dimensional ultracold Rydberg gas.  相似文献   

4.
We report the observation of translationally ultracold heteronuclear ground-state molecules in a two-species magneto-optical trap containing 39K and 85Rb atoms. The KRb molecules are produced via photoassociation and detected by multiphoton ionization. We had characterized their temperature and measured their formation rate constant. We believe that the two-species trap could be used as a reliable source of ultracold molecules to be captured by electrostatic, magnetic, or optical traps. This possibility will certainly motivate further investigation of quantum collective effects as well as high-resolution spectroscopy of the rovibrational level structure of cold heteronuclear molecular systems.  相似文献   

5.
The motion of neutrons in magnetic traps is considered for various cases of neutron polarization. The results of implementing such traps in practice and special features of experiments studying magnetic neutron storage are discussed. The problem of neutron losses during injection via magnetic valves can be solved by conjoining a magnetic trap with a converter of cold neutrons into ultracold ones or with a source of ultracold neutrons. Prospects for expanding neutron-storage experiments by invoking a correlation analysis of neutron decay and by using the transport properties of charged particles in a nonuniform magnetic field are analyzed. In such an investigation, the recording of the storage time of neutrons proper can be supplemented with the detection of decay protons and electrons and with a parallel measurement of the asymmetries of proton and electron emission with respect to the magnetic field. A set of relative measurements permits improving the accuracy of an experimental determination of the neutron lifetime and combining this determination with the determination of correlation coefficients. On this basis, it is possible to find directly the ratio of the weak-interaction constants and the constants themselves. The application of the most advanced reactor and accelerator technologies to subcritical electric nuclear devices optimized for generating cold and ultracold neutrons, along with the use of solid deuterium and superfluid helium, creates preconditions for developing a neutron plant and for launching neutron studies at accelerators. Thus, the work that has been done as a development of V.V. Vladimirsky's proposals on magnetic neutron storage is analyzed, and the potential of a further use of ultracold neutrons and magnetic devices for deploying a full-scale precision experiment to study the beta decay of polarized neutrons is demonstrated.  相似文献   

6.
程俊  张敬芳  许忻平  张海潮  王育竹 《中国物理 B》2017,26(3):33701-033701
We demonstrate the direct loading of cold atoms into a microchip 2-mm Z-trap, where the evaporative cooling can be performed efficiently, from a macroscopic quadrupole magnetic trap with a high loading efficiency. The macroscopic quadrupole magnetic trap potential is designed to be moveable by controlling the currents of the two pairs of anti-Helmholtz coils. The cold atoms are initially prepared in a standard six-beam magneto-optical trap and loaded into the macroscopic quadrupole magnetic trap, and then transported to the atom chip surface by moving the macroscopic trap potential. By means of a three-dimensional absorption imaging system, we are able to optimize the position alignment of the atom cloud in the macroscopic trap and the microchip Z-shaped wire. Consequently, with a proper magnetic transfer scheme, we load the cold atoms into the microchip Z-trap directly and efficiently. The loading efficiency is measured to be about 50%.This approach can be used to generate appropriate ultracold atoms sources, for example, for a magnetically guided atom interferometer based on atom chip.  相似文献   

7.
S. Diehl  C. Wetterich   《Nuclear Physics B》2007,770(3):206-272
We develop a functional integral formalism for ultracold gases of fermionic atoms. It describes the BEC–BCS crossover and involves both atom and molecule fields. Beyond mean field theory we include the fluctuations of the molecule field by the solution of gap equations. In the BEC limit, we find that the low temperature behavior is described by a Bogoliubov theory for bosons. For a narrow Feshbach resonance these bosons can be associated with microscopic molecules. In contrast, for a broad resonance the interaction between the atoms is approximately pointlike and microscopic molecules are irrelevant. The bosons represent now correlated atom pairs or composite “dressed molecules”. The low temperature results agree with quantum Monte Carlo simulations. Our formalism can treat with general inhomogeneous situations in a trap. For not too strong inhomogeneities the detailed properties of the trap are not needed for the computation of the fluctuation effects—they enter only in the solutions of the field equations.  相似文献   

8.
Present work aims to establish that a generalized notion of total noise may be used as a measure of depth of nonclassicality. Here it is shown that the minimum total noise ( Tmin ) can be used as a measure of depth of higher order squeezing. It is also shown that the Caruthers-Nieto quantum phase fluctuation parameter U, which is an indirect measure of total fluctuation in sine and cosine quantum phase operators, is a measure of depth of antibunching. As an specific example, interaction of intense laser beam with an inversion symmetric third order nonlinear medium is studied. In this physical system, existence of different nonclassical states (such as squeezing, antibunching, higher order squeezing etc. ) have already been reported by us. Present work establishes that an appropriate notion of total fluctuation can be used as a measure of nonclassicality in al these cases.  相似文献   

9.
10.
The feasibility of confining dust particles in a plasma by thermophoretic forces was demonstrated. An extended dust structure in a positive glow discharge column was experimentally obtained at liquid nitrogen temperature. The dust structure was confined in an electrostatic-thermal trap, in which vertical stability was provided by the summed action of longitudinal electrostatic field and thermophoretic forces. Traps of this kind can be analyzed in terms of the general principles developed for confining particles in traps with the use of electric and magnetic multipole fields. We were able to change the shape and volume of the structure and even separate it into parts by varying temperature fields.  相似文献   

11.
We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 μm thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.  相似文献   

12.
A setup for laser cooling and confining of 7Li atoms in a magneto-optical trap has been built. The possibility of cooling and trapping of 7Li atoms in a wide range of frequency detuning of the cooling laser has been proved experimentally. Independent information on the density and number of ultracold 7Li atoms on various ground-state sublevels, as well as on the temperature of the atoms, has been obtained with the use of a probing tunable laser. This information is important for preparing an ultracold plasma and Rydberg matter.  相似文献   

13.
The article gives an overview of the rapidly evolving field of magnetic microchip traps (also called ‘atom chips’) for neutral atoms. Special attention is given to Bose–Einstein condensation in such traps, to the particular properties of microchip trap potentials, and to practical considerations in their design. Scaling laws are developed, which lead to an estimate of the ultimate confinement that chip traps can provide. Future applications such as integrated atom interferometers are discussed. Received: 28 March 2002 / Published online: 14 May 2002  相似文献   

14.
We present direct measurements of the overall trap loss rate and the fine structure changing collision rate for ultracold cesium atom confined in a magneto-optical trap over an intensity range of 5 mW/cm2 to 200 mW/cm2. This set of simultaneous measurements allows the accurate extraction and separation of the fine structure changing rate and the radiative escape rate as these two processes compete with one another to determine the overall trap loss rate. Received 4 December 1998 and Received in final form 18 March 1999  相似文献   

15.
A lattice of magneto-optical and magnetic traps for cold atoms   总被引:1,自引:0,他引:1  
We describe basic periodic trapping configurations for ultracold atoms above surfaces. The approach is based on a simple wire grid and can be scaled to provide large arrays of periodically arranged magnetic or magneto-optical traps. The unit cells of the trap lattices are based on crossed wire segments. By alternating the current directions in the wires of the grid it can be distinguished between 3 basic lattice configurations. As a first demonstration, we used macroscopic wires in a 2 layer configuration to realize the unit cells of the lattices. With this experimental setup, we observe two of the basic unit cells and an array of 2×2 magneto optical traps. Received 29 August 2002 / Received in final form 12 December 2002 Published online 18 February 2003  相似文献   

16.
The properties of two-dimensional magnetic traps for laser-cooled atoms are analysed using complex functions. The two components of the magnetic field from a series of parallel, infinitely long, current-carrying wires are represented by a single complex number. The regions of the field where paramagnetic atoms can be trapped occur where the magnetic field is zero. The locations of the zeroes of the field are obtained as the solution to a polynomial and the multiplicity m of the solution determines both the 2(m + 1)-pole nature of the trap and the field gradient through the centre. The zeroes of the field can be merged or split by varying the locations of the currents, their strengths or by applying a uniform magnetic field. The theory is applied to magnetic traps created from long thin wires or permanent magnets on a substrate. The properties of a number of magnetic trap configurations used for atom guides are discussed. Received 28 February 2001 and Received in final form 6 July 2001  相似文献   

17.
Small transverse magnetic quadrupole fields sharply degrade the confinement of non-neutral plasmas held in Malmberg-Penning traps. For example, a quadrupole magnetic field of only 0.02 G/cm doubles the diffusion rate in a trap with a 100 G axial magnetic field. Larger quadrupole fields noticeably change the shape of the plasma. The transport is greatest at an orbital resonance. These results cast doubt on plans to use magnetic quadrupole neutral atom traps to confine antihydrogen atoms created in double-well positron/antiproton Malmberg-Penning traps.  相似文献   

18.
徐润东  刘文良  武寄洲  马杰  肖连团  贾锁堂 《物理学报》2016,65(9):93201-093201
研究了磁光阱中异核超冷钠铯原子的碰撞机理, 测量了超冷钠原子的碰撞损失率, 得到了钠-铯原子的碰撞损失系数βNa-Cs与钠原子俘获光强度之间的关系. 利用多普勒模型计算了不同俘获光强度下的钠原子磁光阱的阱深, 得到了临界光强的理论值, 与实验结果符合得较好.  相似文献   

19.
We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small, guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows for creation of a very regular trapping potential for the atom cloud. Adding a second nanowire allows creation of a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime. PACS 03.75.Gg; 03.75.Dg; 73.63.Fg  相似文献   

20.
We consider how trapped molecules can be sympathetically cooled by ultracold atoms. As a prototypical system, we study LiH molecules co-trapped with ultracold Li atoms. We calculate the elastic and inelastic collision cross sections of 7LiH + 7Li with the molecules initially in the ground state and in the first rotationally excited state. We then use these cross sections to simulate sympathetic cooling in a static electric trap, an ac electric trap, and a microwave trap. In the static trap we find that inelastic losses are too great for cooling to be feasible for this system. The ac and microwave traps confine ground-state molecules, and so inelastic losses are suppressed. However, collisions in the ac trap can take molecules from stable trajectories to unstable ones and so sympathetic cooling is accompanied by trap loss. In the microwave trap there are no such losses and sympathetic cooling should be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号