首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
赵鹏  石广玉 《计算力学学报》2011,28(Z1):131-135,146
弹簧界面元是一种最常用的层合结构界面脱层数值模拟的计算模型.但目前对应于给定的复合材料层合板界面层,弹簧界面元的长度和等效刚度的确定却没有严格的方法,所以时常因为弹簧元刚度定义的不当而导致脱层数值模拟结果的不稳定甚至计算困难.本文给出了一种基于层合板粘接层的实际厚度和材料特性确定弹簧界面元的长度和等效刚度的计算模型.通...  相似文献   

2.
无限元方法及其应用   总被引:4,自引:0,他引:4  
限元是几何上趋于无穷的单元,它是一种特殊的有限元,也是对有限元在求解无界域 问题上的有效补充, 并可实现与有限元间的无缝连接.无限元分为映射无限元和非映射 无限元:映射无限元需要引入几何映射,在局部坐标系中构造插值形状函数,如Bettess 元和Astley元;非映射无限元则直接在整体坐标系中构造插值形状函数,如Burnett元. 本文评述求解无界域问题的无限元方法的研究现状和最新发展.首先介绍无限单元的概念 和无限元方法的特点;围绕求解以Helmholtz方程控制的波动问题,评述几种常规无限单 元的优劣,这些单元包括Bettess元、Astley元和Burnett元.然后介绍新近提出的广义 无限元方法,以及与常规无限元方法的区别与联系.最后对无限元方法在各种问题中的 应用做了总结.  相似文献   

3.
不连续介质力学分析的块体-夹层模型   总被引:8,自引:0,他引:8  
张雄 《力学学报》1997,29(3):323-331
基于岩体等不连续介质的实际结构特征,利用约束变分原理,建立了可同时用于不连续介质和连续介质力学分析的块体 夹层模型.该方法利用拉格朗日乘子法和罚函数法把单元间的连续条件作为约束条件引入泛函中,把不连续介质问题和连续介质问题统一处理,既能方便地求解连续介质力学问题,更重要的是能方便地处理不连续介质力学问题,如岩体结构.由块体 夹层模型可导出刚性有限元和弹性有限元(常应变元)的列式,而且块体的形状可以是任意多边形  相似文献   

4.
基于连续介质或者离散裂隙假设,含裂隙的多孔介质渗流问题有多种数学力学模型。受物理界面的启发,提出一种新的有限裂隙连续介质力学模型,可以为宏观裂隙-多孔介质内的流体输运问题等提供近似计算方案。该模型属于一类双重介质模型,将曲面上低维度的流场转化为三维空间的流场,并且与连续的多孔介质的流场耦合,在数学上表示为统一的输运控制方程和初始边界条件。这个近似模型为不方便实施高维度-低维度耦合求解的数值计算方法提供新的模拟思路,如光滑粒子流体动力学等无网格粒子类方法。  相似文献   

5.
6.
本文采用基于杂交应力元和线弹簧模型相结合的方法,计算表面裂纹平板的应力强度因子。结果表明,本文解和三维有限元解吻合很好,与基于位移元和线弹簧模型相结合的解相比,具有更高的精度和较宽的适用范围。  相似文献   

7.
单壁碳纳米管屈曲的原子/连续介质混合模型   总被引:3,自引:1,他引:3  
张田忠 《力学学报》2004,36(6):744-748
用数学和力学研究所,上海 200072)//力学学报.--2004,36(6).--744~748 提供了一种运用原子/连续介质混合(hybrid atomic/continuum,HAC)方法解决纳米力学问题的思路. 通过在连续介质力学模型中引入利用分子力学方法获得物性参数,建立了预测单壁碳纳米管临界屈曲参数的HAC模型. 结果表明, HAC模型具有与连续介质力学模型可比拟的简洁性, 同时可表征纳米管微观结构特征对屈曲参数的影响. 计算结果表明,Zigzag纳米管的抗屈曲性能优于Armchair纳米管. 基于Tersoff-Brenner作用势的分子动力学结果证实了这一结论.  相似文献   

8.
章青  郁杨天  顾鑫 《计算力学学报》2016,33(4):441-448,450
综述了近场动力学与有限元混合建模方法的研究进展,阐明了各种混合建模方法的基本原理与特点,并重点介绍本课题组在近场动力学与有限元方法混合建模方面的研究工作。现有近场动力学与有限元混合建模方法包括位移协调约束、力耦合、混合函数方法以及子模型方法等,除子模型方法外,都可归结为并行式多尺度分析方法,其基本思想是将计算结构划分为近场动力学子域、有限元子域以及两者的交界区域(或重叠区域、或界面单元、或过渡区域)。子模型方法可归结为显-显分析方法,先采用显式有限元进行整体分析,后采用近场动力学方法对重点区域进行分析。混合建模方法需要着重提高交界区域的计算精度,并且消除虚假力和虚假应力波问题。提出了通过力耦合的近场动力学与有限元混合建模的隐式分析方法,该方法不再设置重叠区,通过杆单元连接近场动力学子域与有限元子域,其中界面上的有限元结点不仅与其所在单元的其他结点发生作用,还通过杆单元与以其为圆心、一定半径的圆域内的其他物质点相互作用。研究表明,本文提出的混合模型和求解方法既能有效解决裂纹扩展等不连续问题,又可提高计算效率,为工程结构破坏问题的计算分析提供一种有效方法。  相似文献   

9.
偶应力问题的杂交/混合元分析   总被引:7,自引:0,他引:7  
将弹性力学中Hellinger—Reissner交分原理推广到偶应力理论中,并以罚函数的形式引入其约束条件,提出了一种有效的杂交/混合单元。文中分别分析了带中心小孔平板在轴向均匀加载时的应力集中情况,以及含中问裂纹的无限平板单轴拉伸时的位移场和应力场。算例表明,该单元计算效率高,精度好,即使在材料本征长度很小时,仍然能够得到相当理想的结果。  相似文献   

10.
冰荷载是影响海洋平台结构及其上部设备作业安全的重要因素。针对海洋平台与海冰相互作用的动力过程,采用具有粘接-破碎性能的离散元方法(DEM)对海冰的破碎特性进行分析,采用有限元方法(FEM)对海洋平台结构的动力响应进行计算;同时考虑海冰与海洋平台结构的耦合作用,将海冰的离散元方法与海洋平台结构的有限元方法相结合,建立了冰激海洋平台结构振动的DEM-FEM模型,并由此计算海冰作用下海洋平台结构的振动响应以及冰荷载特性。  相似文献   

11.
采用间断有限元方法、LS方法和通量装配技术相结合,建立了一种计算可压缩多介质流动的有效 方法。计算中以光滑Heavside函数构造流体比热比和重新初始化方程中的符号距离函数,并采用通量装配 技术抑制界面附近的非物理振荡。为解决可压缩多介质流动提供一种新的手段。  相似文献   

12.
流体饱和两相多孔介质拟静态问题的混合有限元方法   总被引:1,自引:0,他引:1  
针对基于混合物理论的两相多孔介质模型,采用Galerkin加权残值有限元法,导出求解所静态问题的基于us-uF-P变量的混合有限元方程,由于系统方程的系数矩阵非定,进而针对该方程组提出了一种失代求解方法,并由分片试验得出节点压力插值函数的阶须低于固体相节点的位移插值函数的阶的结论,算例结果表明,采用基于u2-uF-p变量的混合法计算所得的固体相和流体相速度以及固体相的有效应力与罚方法一致,而压力值的粗度高于罚方法。  相似文献   

13.
采用格林公式和基本解推导出直接边界积分方程来求解渗流问题.边界积分方程数值离散基于格林元方法(Green element methond),改进了原方法中压力和压力导数的求解方法,命名为混合边界元方法(Mixed boundary element method).相较于格林元类方法,该方法显式考虑了求解节点的外法向流量值和压力值,并使求得的数值解在求解区域上能够连续,符合实际的物理过程,在不增加额外未知数的情况下提高了计算精度.分析了不同网格类型对模拟计算结果的影响,并对稳定渗流问题、非稳定(瞬态)渗流问题和非稳态问题进行了实例计算,结果显示改进方法提高了计算精度,并对各类渗流问题有较好的适应性.  相似文献   

14.
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.  相似文献   

15.
MIXEDCOMPATIBLEELEMENTANDMIXEDHYBRIDINCOMPATIBLEELEMENTVARIATIONALMETHODSINDYNAMICSOFVISCOUSBAROTROPICFLUIDSShenXiao-ming(沈孝明...  相似文献   

16.
A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common inteface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constrait conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.  相似文献   

17.
成功建立了Hahn-Tsai复合材料模型的非线性杂交应力有限元方程,采用Newton-Raphson迭代法求解结构的非线性位移方程。在迭代过程中,为了提高计算效率可采用简单迭代法由节点位移求解单元应力场。但是,当载荷增加到一定程度以后,非线性应力场由于循环迭代而无法收敛,显然,一般的加速方法不能解决这种循环迭代的发散问题。因此,本文发展了一种确实有效的非线性应力场迭代新方法,在不增加计算工作量的情况下,不仅极大地提高了收敛速度,而且对于较大载荷也能够很好地收敛,从而解决了大载荷下非线性杂交元方法失败的关键问题。数值算例表明该方法是确实可行的。  相似文献   

18.
陆洋春  张建铭 《应用力学学报》2020,(1):168-175,I0011,I0012
传统有限元法由于采用低阶插值计算应力强度因子时,需要划分的网格数较多,收敛速度较慢,得到的应力强度因子精度不足。p型有限元法在网格确定时通过增加插值多项式的阶数来提高计算精度,具有网格划分少、收敛速度快、精度高、自适应能力强等特点。本文采用基于p型有限元法的有限元计算软件StressCheck计算得到应力场和位移场,并由围线积分法导出混合型应力强度因子(SIFs)。通过几个经典算例,分析了围线的选择对计算精度的影响,计算了不同裂纹长度、不同裂纹角度和裂纹在应力集中区域不同位置时的应力强度因子。并将数值结果、理论解与文献中其他数值计算方法所得的部分结果进行了对比分析,结果表明自由度数不大于7000时,导出的应力强度因子相对误差最大不超过1.2%,数值解表现出较高的精度及数值稳定性。  相似文献   

19.
In this paper, we derive a new mixed element format of hexahedral elements for Navier-Stokes problem in three-dimensional space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号