首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A novelty method, frontal polymerization (FP), was employed to directly produce a series of polyacrylamide (PAM), poly(N-isopropylacrylamide) (PNIPAM) and acrylamide-N-isopropylacrylamide copolymer macroporous monoliths. Field emission scanning electronic microscope and mercury intrusion method were adopted to measure some parameters of these monoliths, such as frame, pore size distribution as well as porosity. Effects of types of monomer, thicker and surfactant on porous structure of monoliths were studied. A variety of pore morphologies, such as honeycomb, sheet and grid, was obtained by changing types of reactants. The above results allowed us to conclude that FP can be exploited as an alternative means of macroporous polymer monolithic synthesis with the additional advantages of high velocity, environmental safe and energy reduction.  相似文献   

2.
This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10−2 mM Rhodamine B in water solution.  相似文献   

3.
Micrometer-scale poly(N-isopropylacrylamide) (poly-NIPAAm) hydrogel monolith patterns were fabricated on solid surfaces using soft lithography. At sufficiently high aspect ratios, the hydrogel monoliths swell and contract laterally with temperature. The spaces between the monoliths form a series of trenches that catch, hold, and release appropriately sized targets. A series of poly-NIPAAm monoliths were fabricated with dry dimensions of 40 microm height, 12 microm diameter, and a spacing of 12 microm between monoliths. Above the lower critical solution temperature (LCST), the monoliths collapse to their dry dimensions and the spacing between monoliths is 12 microm. Below the LCST, the monoliths swell by 70% in the lateral direction, reducing the gap size between monoliths to 3 microm. The potential use of the hydrogel monoliths as size-selective "catch and release" structures was demonstrated with a mixture of 6 and 20 microm polystyrene microspheres, where the 6 microm diameter particles were selectively concentrated and separated from the larger particles.  相似文献   

4.
Highly cross-linked networks resulting from single crosslinking monomers were found to enhance the concentrations of mesopores in, and the surface areas of, polymeric monoliths. Four crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol=2 or 4) and pentaerythritol diacrylate monostearate (PDAM), were used to synthesize monolithic capillary columns for reversed phase liquid chromatography (RPLC) of small molecules. Tetrahydrofuran (THF) and decanol were chosen as good and poor porogenic solvents for BAEDA-2 and BAEDA-4 monoliths. For the formation of the BADMA monolith, THF was replaced with dimethylformamide (DMF) to improve the column reproducibility. Appropriate combinations of THF, isopropyl alcohol and an additional triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO porogen were found to be effective in forming rigid PDAM monoliths with the desired porosities. Selection of porogens for the BADMA and PDAM monoliths was investigated in further detail to provide more insight into porogen selection. Isocratic elution of alkyl benzenes at a flow rate of 0.3 μL/min was conducted for BADMA and PDAM monoliths. The peaks showed little tailing on both monoliths without addition of acid to the mobile phase. The column efficiency measured for pentylbenzene using the BADMA monolithic column was 60,208 plates/m (k=7.9). Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution. Optimized monoliths synthesized from all four crosslinking monomers showed high permeability, and demonstrated little swelling or shrinking in different polarity solvents. Column preparation was highly reproducible; relative standard deviation (RSD) values were less than 1.2% and 7.5% based on retention times and peak areas, respectively, of alkyl benzenes.  相似文献   

5.
A novel approach for the fabrication of macroporous poly(glycidyl methacrylate-ethylene glycol dimethacrylate) monolith is presented. The method involved the use of sodium sulfate granules and organic solvents as co-porogens. Compared with the conventional monoliths [ML-(1-3)] using organic solvents only as a porogen, the improved monoliths [MLS-(1-3)] showed not only higher column efficiency and dynamic binding capacity (DBC) for protein (bovine serum albumin, BSA), but also higher column permeability and lower back pressure. It is considered that the superpores introduced by the solid granules played an important role for the improvement of the monolith performance. Moreover, poly(glycidyl methacrylate-diethylamine) tentacles were grafted onto the pore surface of MLS-3 monolith. This has further increased the DBC of BSA to 74.7 mg/ml, about three times higher than that of the monoliths without the grafted tentacles. This grafting does not obviously decrease the column permeability, so a new monolith of high column permeability and binding capacity has been produced for high-performance preparative protein chromatography.  相似文献   

6.
Transparent, pyridine-functionalized sol-gel monoliths have been formed and their use in Cr(VI) sensing applications is demonstrated. The monoliths were immersed in acidic Cr(VI)-containing solutions, and the Cr(VI) uptake was monitored using UV-vis and atomic absorption spectroscopies. At concentrations at the ppm level, the monoliths exhibit a yellow color change characteristic of Cr(VI) uptake, and this can be measured by monitoring the absorption change at about 350 nm using UV-vis spectroscopy. Concentrations at the ppb level are below the limit of detection using this wavelength of 350 nm for measurement. However, by adding a diphenylcarbazide solution to monoliths that have been previously immersed in ppb-level Cr(VI) solutions, a distinct color change takes place within the gels that can be measured at about 540 nm using UV-vis spectroscopy. Concentrations as low as 10 ppb Cr(VI) can be measured using this method. The monoliths can then be regenerated for subsequent sensing cycles by thorough washing with 6.0 M HCl. The factors affecting monolith uptake of Cr(VI) have been explored. In addition, the gels have been characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) measurements.  相似文献   

7.
Nitroxide‐mediated polymerization was used as a model system for preparing styrenic monolithic materials with significant mesopore contents in different mold formats, with the aim of assessing the validity of pore characterization of capillary monoliths by analysis of parallel bulk polymerized precursor solution. Capillary monoliths were prepared in 250 μm id fused silica tubes (quadruplicate samples, in total 17 m), and the batch polymerizations were carried out in parallel in 100 μL microvials and regular 2 mL glass vials, both in quintuplicate. The monoliths recovered from the molds were characterized for their meso‐ and macroporous properties by nitrogen sorptiometry (three repeated runs on each sample), followed by a single analysis by mercury intrusion porosimetry. A total of 14 monolith samples were thus analyzed. A Grubbs' test identified one regular vial sample as an outlier in the sorptiometric surface area measurements, and data from this sample were consequently excluded from the pore size calculations, which are based on the same nitrogen sorption data, and also from the mercury intrusion data set. The remaining data were subjected to single factor analyses of variance analyses to test if the porous properties of the capillary monoliths were different from those of the bulk monoliths prepared in parallel. Significant differences were found between all three formats both in their meso‐ and macroporous properties. When the dimension was shrunk from conventional vial to capillary size, the specific surface area decreased from 52.2±4.7 to 34.6±1.7 m2/g. This decrease in specific surface area was accompanied by a significant shift in median diameter of the through‐pores, from 310±3.9 to 544±13 nm. None of these differences were obvious from the scanning electron micrographs that were acquired for each sample type. The common practice of determining the mesopore characteristics from analysis of samples prepared by parallel bulk polymerization and looking for changes in the macropore structure by visual assessment of SEMs are therefore both rather questionable, at least for monoliths of the kind used in this study.  相似文献   

8.
The geometrical properties of co-continuous macroporous silica monoliths have been studied by laser scanning confocal microscopy (LSCM) and a comparison has been made with those obtained by conventional mercury intrusion method. Tetrahedral skeleton model (TMS), which mimics the gel skeleton shape of monoliths, was compared with real monoliths in terms of macropore and porosity using the geometrical parameters extracted from the LSCM observations. Liquid flow behavior through the macroporous silica monoliths was examined in comparison with those simulated using TSM, based on the geometrical properties obtained from LSCM observations. Heterogeneity in macropore topology and connectivity in pores and skeletons are suggested to contribute to the improvement of the model structure for macroporous monoliths.  相似文献   

9.
Novel porous polymer monoliths grafted with poly{oligo[(ethylene glycol) methacrylate]‐co‐glycidyl methacrylate} brushes were fabricated via two‐step atom‐transfer radical polymerization and used as a trypsin‐based reactor in a continuous flow system. This is the first time that atom‐transfer radical polymerization technique was utilized to design and construct polymer monolith bioreactor. The prepared monoliths possessed excellent permeability, providing fast mass transfer for enzymatic reaction. More importantly, surface properties, which were modulated via surface‐initiated atom‐transfer radical polymerization, were found to have a great effect on bioreactor activities based on Michaelis–Menten studies. Furthermore, three model proteins were digested by the monolith bioreactor to a larger degree within dramatically reduced time (50 s), about 900 times faster than that by free trypsin (12 h). The proposed method provided a platform to prepare porous monoliths with desired surface properties for immobilizing various enzymes.  相似文献   

10.
Two different monoliths, both containing phosphoric acid functional groups and polyethylene glycol (PEG) functionalities were synthesized for cation-exchange chromatography of peptides and proteins. Phosphoric acid 2-hydroxyethyl methacrylate (PAHEMA) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) were reacted with polyethylene glycol diacrylate (PEGDA) and polyethylene glycol acrylate (PEGA), respectively, in 75-μm i.d. UV-transparent fused-silica capillaries by photo-initiated polymerization. The hydrophobicities of the monoliths were evaluated using propyl paraben under reversed-phase conditions and synthetic peptides under ion-exchange conditions. The resulting monoliths exhibited lower hydrophobicities than strong cation-exchange monoliths previously reported using PEGDA as cross-linker. Dynamic binding capacities of 31.2 and 269 mg/mL were measured for the PAHEMA–PEGDA and BMEP–PEGA monoliths, respectively. Synthetic peptides were eluted from both monoliths in 15 min without addition of acetonitrile to the mobile phase. Peak capacities of 50 and 31 were measured for peptides and proteins, respectively, using a PAHEMA–PEGDA monolith. The BMEP–PEGA monolith showed negligible hydrophobicity. A peak capacity of 31 was measured for the BMEP–PEGA monolith when a 20-min salt gradient rate was used to separate proteins. The effects of functional group concentration, mobile phase pH, salt gradient rate, and hydrophobicity on the retention of analytes were investigated. Good run-to-run [relative standard deviation (RSD) < 1.99%] and column-to-column (RSD < 5.64) reproducibilities were achieved. The performance of the monoliths in ion-exchange separation of peptides and proteins was superior to other polymeric monolithic columns reported previously when organic solvents were not added to the mobile phase.  相似文献   

11.
Poly(lauryl methacrylate-co-ethylene dimethacrylate) monoliths were in situ synthesized within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16" o.d. for microbore reversed-phase HPLC. In order to obtain practically useful monoliths with adequate column efficiency, low flow resistance, and good mechanical strength, some parameters such as total monomer concentration (%T), cross-linking degree (%C) and polymerization temperature were optimized. High-efficiency monoliths were successfully obtained by thermal polymerization of a monomer mixture (40%T, 10%C) with a binary porogenic solvent consisting of 1-propanol and 1,4-butandiol (7:4, v/v) at a high temperature of 90 °C. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC), while the column performance was evaluated through the separations of a series of alkylbenzenes in acetonitrile-water (50:50, v/v) eluent. At a normal flow rate of 50 μL/min (corresponding to 1.66 mm/s), the optimized monolithic columns typically exhibited theoretical plate numbers of 6000 plates/10 cm-long column for amylbenzene (k>40), and the pressure drop was always less than 1 MPa/10 cm. The monoliths, which were chemically anchored to the tube inner wall surface using a bifunctional silylation agent, exhibited adequate mechanical strength of up to 12-13 MPa, and were properly operated at 10 times higher flow rate than normal, reducing the separation time to one tenth. The lauryl methacrylate-based monolithic column was applied to a rapid and efficient separation of ten common proteins such as aprotinin, ribonuclease A, insulin, cytochrome c, trypsin, transferrin, conalbumin, myoglobin, β-amylase, and ovalbumin in the precipitation-redissolution mode. Using a linear CH(3)CN gradient elution at a flow rate of 500 μL/min (10-times higher flow rate), 10 proteins were baseline separated within 2 min.  相似文献   

12.
In this paper, hierarchically porous Fe2O3/CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates. The structure of composite monoliths was characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption. The results indicated that the molar ratio of Fe to Cu had a great influence on the crystal phase of Fe2O3, pore size and the structure of the macroporous wall. The Fe2O3/CuO composite monoliths consist of hierarchically macroporous and mesoporous structure, while the sample with the Fe/Cu molar ratio of 2 : 1 possesses tighter wall structure than other samples. It is expected that as-prepared Fe2O3/CuO composite monoliths have potential applications in several fields as catalysts, catalyst supports, chemical sensors and high-performance liquid chromatography (HPLC).  相似文献   

13.
In this paper,hierarchically porous Fe2O3 /CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates.The structure of composite monoliths was characterized by X-ray diffraction,scanning electron microscopy,nitrogen adsorption-desorption.The results indicated that the molar ratio of Fe to Cu had a great influence on the crystal phase of Fe2O3,pore size and the structure of the macroporous wall.The Fe2O3 /CuO composite monoliths consist of hierarchically macroporous and mesoporous structure,while the sample with the Fe/Cu molar ratio of 2:1 possesses tighter wall structure than other samples.It is expected that asprepared Fe2O3/CuO composite monoliths have potential applications in several fields as catalysts,catalyst supports,chemical sensors and high-performance liquid chromatography (HPLC).  相似文献   

14.
Ou J  Zhang Z  Lin H  Dong J  Wu M  Zou H 《Electrophoresis》2012,33(11):1660-1668
Hydrophobic organic-inorganic hybrid monolithic columns were synthesized via thermally initiated free radical polymerization with the confines of 75 μm id capillary using a polyhedral oligomeric silsesquioxane (POSS) reagent containing eight or more methacrylate groups as the crosslinker. Three organic functional monomers, butyl methacrylate (BuMA), lauryl methacrylate (LMA) and methacrylic acid (MAA), were selected and copolymerized with the POSS in the presence of 1-propanol and 1,4-butanediol to prepare the poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths, respectively. The 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was copolymerized as ionizable monomer into the poly(POSS-co-BuMA) and poly(POSS-co-LMA) for the generation of EOF in capillary electrochromatography (CEC). A hybrid poly(POSS-co-LMA-co-MAA) monolith was also similarly prepared by copolymerizing ternary monomers of POSS, LMA, and MAA, and compared with poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths. The resulting four kinds of POSS-contained hybrid monoliths exhibited good permeability and mechanical stability. Their column efficiencies were evaluated by the separation of alkylbenzene homologues and polar compounds in CEC. The results indicated that the highest efficiencies of 194,100 and 102,100 theoretical plates per meter for thiourea and benzene were obtained on the poly(POSS-co-LMA-co-MAA) monolith. Additionally, the poly(POSS-co-LMA-co-MAA) monolith exhibited better selectivity for separation of polar compounds than those of other hybrid monoliths.  相似文献   

15.
采用无搅动原位聚合模式,在聚醚醚酮柱管中直接制备了聚合物整体固定相。通过扫描电镜观察到该整体固定相的孔径分布呈双峰模式,且孔结构均匀。用压汞法测定了该固定相的孔径分布、孔隙率及比表面积等参数,考察了致孔剂组成、聚合温度及交联剂含量等参数对固定相孔结构的影响,并对制备条件进行了优化。测定了流速与柱前压的关系,实验表明此整体固定相具有良好的通透性。通过对山羊血清和低聚核苷酸的分离分析,证明了所制备的整体固定相适合用于生物大分子的分离纯化。  相似文献   

16.
We recently presented a short communication on the preparation of epoxy‐based monoliths possessing highly ordered structures by polymerization induced phase separation based on the spinodal decomposition. In this article, we describe in detail on reaction mechanisms and structural properties of the epoxy‐based monoliths with well‐controlled macropores in the micrometer range. We prepared epoxy‐based monoliths based on diglycidyl ether of bisphenol A, bis(4‐aminocyclohexyl)methane, and polyethylene glycol with a bicontinuous structure by in situ step‐growth polymerization. Different morphology of epoxy‐based monoliths could be obtained by changing formulation of monomers and porogenic solvents. Characterizations of their morphologies were performed using scanning electron microscopy, mercury intrusion porosimetry, small angle X‐ray scattering, and gas adsorption measurement (BET method). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3272–3281, 2008  相似文献   

17.
Mesoporous silica monoliths with various ordered nanostructures containing transition metal M2+ cations in variable amounts were elaborated and studied. A phase diagram depicting the different phases as a function of the M2+ salt/tetramethyl orthosilicate (TMOS) and surfactant P123/TMOS ratios was established. Thermal treatment resulted in mesoporous monoliths containing isolated, accessible M2+ species or condensed metal oxides, hydroxides, and salts, depending on the strength of the interactions between the metal species and the ethylene oxide units of P123. The ordered mesoporosity of the monoliths containing accessible M2+ ions was used as a nanoreactor for the elaboration of various transition metal compounds (Prussian blue analogues, Hofmann compounds, metal–organic frameworks), and this opens the way to the elaboration of a large range of nanoparticles of multifunctional materials.  相似文献   

18.
We examined the use of monolithic capillary columns prepared via ring-opening metathesis polymerization (ROMP) for peptide separation in voltage-assisted capillary LC (voltage-assisted CLC). In order to demonstrate their potential for peptide separation, ROMP-derived monoliths with RP properties were prepared. The preparation procedure of monoliths was transferred from ROMP monoliths optimized for CLC. ROMP monoliths were synthesized within the confines of 200 microm id fused-silica capillaries with a length of 37 cm. After optimization of the chromatographic conditions, the separation performance was tested using a well-defined set of artificial peptides as well as two peptidic mixtures resulting from a tryptic digest of BSA as well as a collagenase digest of collagen. ROMP monoliths showed comparable performance to other monolithic separation media in voltage-assisted CLC published so far. Therefore, we conclude that by optimizing the composition of the ROMP monoliths as well as by using the controlled manner of their functionalization, ROMP monoliths bear a great potential in CLC and CEC.  相似文献   

19.
Rigid monoliths were synthesized solely from poly(ethylene glycol) diacrylates (PEGDA) or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths by one-step UV-initiated polymerization. Methanol/ethyl ether and cyclohexanol/decanol were used as bi-porogen mixtures for the PEGDA and PEGDMA monoliths, respectively. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. For tri- and tetra-ethylene glycol diacrylates (i.e., PEGDA 258 and PEGDA 302), most combinations of methanol and ethyl ether were effective in forming monoliths, while for diacrylates containing longer chain lengths (i.e., PEGDA 575 and PEGDA 700), polymerization became more sensitive to the bi-porogen ratio. A similar tendency was also observed for PEGDMA monomers. Polymerization of monoliths was conducted at approximately 0 °C and room temperature, which produced significant differences in monolith morphology and permeability. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution in hydrophobic interaction chromatography (HIC). Detailed study of these monoliths demonstrated that chromatographic performance was not affected by changing the ratios of the two porogens, but resulted in almost identical retention times and comparable peak capacities. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. Mass recoveries for test proteins were found to be greater than 90, indicating its excellent biocompatibility. All monoliths demonstrated nearly no swelling or shrinking in different polarity solvents, and most of them could be stored dry, indicating excellent stability due to their highly crosslinked networks. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The relative standard deviation (RSD) values based on retention times of retained proteins were all within 2.2%, and in most cases, less than 1.2%. The RSD values based on peak areas were within 9.5%, and in most cases, less than 7.0%. The single-monomer synthesis approach clearly improves column-to-column reproducibility.  相似文献   

20.
A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号