首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na3Al2Nb34O64 and Na (Si, Nb) Nb10O19. Cluster Compounds with Isolated Nb6-Octahedra Hexagonal ormolu coloured plates of the new compounds Na3Al2Nb34O64 ( I ) and Na(Si, Nb)Nb10O19 ( II ) were prepared by heating pellets of NaF, Al2O3, NbO2 and NbO (3:1:8:2) and NaF, NbO2 and NbO (1:4:2), respectively, at approx. 850°C. I was contained in a sealed gold capsule, II in a silica tube. The Si incorporated in II originates from the container material. Both compounds crystallize in R 3 , I with a = 784.4(1), c = 7065(1) pm, Z = 3 and II with a = 784.1(1), c = 4221.8(5) pm, Z = 6. I and II represent new structure types. They contain the same characteristic structural units, namely discrete Nb6O12 clusters (dNb–Nb = 283 ± 4 pm) and Nb2O10 units with Nb–Nb dumbells (dNb–Nb ≈? 269 pm) in edgesharing coordination octahedra. In addition NbO6 octahedra containing Nb in the oxidation state + 5 and NaO12 cube-octahedra occur in both compounds besides AlO4 and SiO4 tetrahedra in I and II , respectively. The structures can be described in terms of a common closepacking of O and Na atoms together with Nb6 octahedra.  相似文献   

2.
Two new mixed-metal tellurites, Na1.4Nb3Te4.9O18 and NaNb3Te4O16, have been synthesized by standard solid-state techniques using Na2CO3, Nb2O5, and TeO2 as reagents. The structures of Na1.4Nb3Te4.9O18 and NaNb3Te4O16 were determined by single-crystal X-ray diffraction. Both of the materials exhibit three-dimensional structures composed of NbO6 octahedra, TeO4, and TeO3 polyhedra. The Nb5+ and Te4+ cations are in asymmetric coordination environments attributable to second-order Jahn-Teller (SOJT) effects. The Nb5+ cations undergo an intraoctahedral distortion toward a corner (local C4 direction), whereas the Te4+ cations are in distorted environments owing to their nonbonded electron pair. Infrared and Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dielectric measurements were also performed on the reported materials. Crystal data: Na1.4Nb3Te4.9O18, monoclinic, space group C2/m (No. 12), with a = 32.377(5) A, b = 7.4541(11) A, c = 6.5649(9) A, beta = 95.636(5) degrees, V = 1576.7(4) A3, and Z = 4; NaNb3Te4O16, monoclinic, space group P2(1)/m (No. 11), with a = 6.6126(13) A, b = 7.4738(15) A, c = 14.034(3) A, beta = 102.98(3) degrees, V = 675.9(3) A3, and Z = 2.  相似文献   

3.
We studied temperature dependence of complex capacitance, impedance, and polarized Raman spectra of single crystal Cs2Nb4O11. First, we observed a sharp lambda-shaped peak at 165 degrees C in the complex capacitance, then found drastic changes in the Raman spectra in the same temperature range. Utilizing the pseudosymmetry search of structure space group, we attributed the observed anomalies to a structural change from the room temperature orthorhombic Pnn2 to another orthorhombic Imm2. We also measured room temperature polarized Raman spectra in different symmetries of normal vibrations and assigned high wavenumber Raman bands to the internal vibrations of NbO6 octahedra and NbO4 tetrahedra.  相似文献   

4.
类钙钛矿新铌酸盐Ba5LaTi2Nb3O18的合成、结构与介电特性   总被引:2,自引:0,他引:2  
为满足现代通信技术小型化、集成化与高可靠性的迫切要求,探索具有高介电常数、低介电损耗与低温度系数的微波介电材料引起了材料科学、化学、物理和电子科学等领域科学工作者的广泛关注,并已开发出复合钙钛矿结构的Ba(Mg1/3Ta2/3)O3、Ba(Zn1/3Ta2/3)O3和钨青铜结构的Ba6-3xLn8+2x·Ti18O54及Ba2Ti9O20等实用化的高性能材料[1~7].这类材料均由氧八面体共顶连接,而且氧八面体内(B位)、外(A位)阳离子比例等于或略大于1,由此,我们推测在B位与A位阳离子比例略小于1的类钙钛矿结构中也极有可能存在具有优良介电性能的新材料,因此对通式为AnBn-1O3n(n=5,6,7,8)的系列新化合物进行了系统的合成、结构与介电性能研究[8,9].本文报道在BaO-La2O3-TiO2-Nb2O5体系中合成的具有5层类钙钛矿结构的新铌酸盐Ba5LaTi2Nb3O18,发现该材料具有较好的介电性能.  相似文献   

5.
Two new isostructural tellurites, Pb(4)Te(6)M(10)O(41) (M = Nb(5+) or Ta(5+)), have been synthesized by standard solid-state techniques using PbO, Nb(2)O(5) (or Ta(2)O(5)), and TeO(2) as reagents. The structures of Pb(4)Te(6)Nb(10)O(41) and Pb(4)Te(6)Ta(10)O(41) were determined by single-crystal and powder X-ray diffraction. The materials exhibit a three-dimensional framework consisting of layers of corner-shared NbO(6) octahedra connected by TeO(3) and PbO(6) polyhedra. The Nb(5+), Te(4+), and Pb(2+) cations are in asymmetric coordination environments attributable to second-order Jahn-Teller effects. The Nb(5+) cations undergo an intraoctahedral distortion either toward a face or a corner, whereas the Te(4+) and Pb(2+) cations are in distorted environments attributable to their lone pair. In addition, the TeO(3) polyhedra strongly influence the direction of the Nb(5+) intraoctahedral distortion. Infrared and Raman spectroscopy, thermogravimetric analysis, and dielectric measurements are also presented. Crystal data: Pb(4)Te(6)Nb(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.412(3) A, b = 20.114(3) A, c = 7.5008(10) A, beta = 99.630(4) degrees, V = 3482.4(8) A(3), and Z = 4; Pb(4)Te(6)Ta(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.340(8) A, b = 20.068(5) A, c = 7.472(2) A, beta = 99.27(3) degrees, V = 3453.8(2) A(3), and Z = 4.  相似文献   

6.
为满足现代通信技术的小型化、集成化与高可靠性的迫切要求,探索具有高介电常数、低介电损耗与低温度系数的微波介电材料引起了材料科学、化学、物理、电子等领域科学工作者的广泛关注,并已开发出复合钙钛矿结构Ba(Zn_(1/3)Ta_(2/3))O_3、钨青铜结  相似文献   

7.
在SrO-Ln2O3-TiO2-Nb2O5(Ln=La, Y)体系中,通过固相反应法,合成了填满型钨青铜结构新铌酸盐Sr5LaTi3Nb7O30与Sr5YTi3Nb7O30.分别采用X射线衍射分析、扫描电镜进行了结构分析,并进行了介电性能测试.结果表明, Sr5LaTi3Nb7O30室温时为四方钨青铜结构顺电相,晶胞参数a=1.233 60(4) nm, c=0.388 01(2) nm;频率为1 MHz时,其陶瓷的室温相对介电常数为466,介电损耗约为5×10-3.Sr5YTi3Nb7O30为弛豫性铁电体, 10 kHz时居里温度为260 ℃;室温时为四方钨青铜结构铁电相,晶胞参数a=1.228 80(4) nm, c=0.387 05(2) nm; 1 MHz时,陶瓷体的室温相对介电常数为290.  相似文献   

8.
共沉淀法合成Pb3Nb2O8纳米粉   总被引:1,自引:0,他引:1  
在PbO-Nb2O5-KOH-H2O体系中,于90℃下得到纳米级Pb3Nb2O8陶瓷粉.原料来源及配比、溶液碱度及合成温度对产物物相的形成有较大影响.在Pb3Nb2O8的合成中,必须以可溶性铌酸盐和醋酸铅作为反应原料,同时以KOH调节体系中铌酸盐的聚集状态.当n(Pb)/n(Nb)接近1/1,KOH浓度在1~3mol/L时,得到Pb3Nb2O8纯相,当KOH浓度大于3mol/L时容易生成反应活性较低的PbO,产生杂相.  相似文献   

9.
Two new compounds, LiBi4Nb3O14 and LiBi4Ta3O14, have been synthesized by the solid-state method, using Li2CO3, Bi2O3, and M2O5 (M = Nb, Ta) in stoichiometric quantities. These compounds crystallize in the monoclinic C2/c space group with a = 13.035(3) A, b = 7.647(2) A, c = 12.217(3) A, beta = 101.512(4) degrees , V = 1193.4(5) A3 , and Z = 4 and a = 13.016(2) A, b = 7.583(1) A, c = 12.226(2) A, beta = 101.477(3) degrees , V = 1182.6(5) A3, and Z = 4, respectively. These are isostructural and the structure along the b axis consists of layers of [Bi2O2]2+ units separated by layers of LiO4 tetrahedra and NbO6 octahedra hence depicting an unusual variation in the Aurivillius phase isolated for the first time. The presence of lithium has been confirmed by 7Li NMR studies. ac impedance measurements and variable temperature (7)Li NMR studies indicate oxygen ion conductivity in these materials. The UV-visible spectra suggest a band gap of 3.0 eV for LiBi4Nb3O14 and 3.5 eV for LiBi4Ta3O14, respectively, and the associated studies on degradation of dyes and phenols render these materials suitable for photocatalysis.  相似文献   

10.
新铌酸盐Sr5NdTi3Nb7O30的合成与介电特性   总被引:2,自引:0,他引:2  
一些铁电铌酸盐具有优良的电光性能和非线性光学性能,因此该类化合物的人工合成、结构与性能的研究受到了重视,其中钨青铜结构的系列晶体(例如SBN、KNSBN、SCNN)在材料的制备和器件的设计方面都取得了很大进展,它们在实时全息存储、集成  相似文献   

11.
类钙钛矿新铌酸盐Ba3La2Ti2Nb2O15的合成、结构与介电特性   总被引:2,自引:0,他引:2  
为满足现代通信技术的小型化、集成化与高可靠性的迫切要求,探索具有高介电常数、低介电损耗与低温度系数的微波介电材料引起了材料科学、化学、物理和电子学等领域科学工作者的广泛关注,并已开发出复合钙钛矿结构[Ba(Zn1/3Ta2/3)O3]和钨青铜结构[Ba6-3xLn8+2xTi18O54]等实用化的高性.  相似文献   

12.
铌酸盐 Ba5YTi3 Nb7 O30的结构与介电性能   总被引:2,自引:0,他引:2  
在BaO-TiO2-Mb2O5体系中通过掺Y3-合成了铌酸盐Ba5YTi3Nb7O30 ,采用粉晶X射线衍射(XRD)对其结构进行了分析,并测试了其烧结体的介电特性,结果表明,在室温下Ba4YT3 Nb7O30属于填满型四方钨青铜结构,晶胞参数,a=1.24332(2)nm,c=0.39453(1)nm,α=β=γ=90度,Ba5TYi3Nb7O30在100度从铁电相转变为顺电相。  相似文献   

13.
The catalytically relevant Nb2Mo3O14 phase has been prepared in bulk and silica-supported forms via the so-called "multiple molecular precursors method" from water-soluble oxo-oxalato complexes of Nb and Mo, (NH4)3[NbO(ox)3].H2O, and (NH4)2[MoO3(ox)].H2O. Thermal treatment of the mixed Nb-Mo precursor has been optimized for the formation of the pure Nb2Mo3O14 phase, either as bulk oxide or a silica-supported phase with high specific surface area. A characterization of the bulk phase obtained via the conventional ceramic route has also been carried out and a comparison has been made with the precursors route. According to this route, the Nb2Mo3O14 phase is shown to be formed in a pure form at 700 degrees C (i.e., 100 degrees C below the lowest temperature reported so far for the formation of the phase by the ceramic method). The supported samples have appreciable specific surface areas of 60-70 m(2) g(-1), much larger than those reached in the previous attempts under vacuum in sealed vials. The SEM and EDX analyses reveal a high dispersion of the desired phase on the silica support.  相似文献   

14.
Six new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems have been prepared by solid-state reactions at high-temperatures. Their structures were determined by single-crystal X-ray diffraction studies. AM(3)O(6)(QO(3))(2) (A = K, Rb, M = Nb, Ta, Q = Te; A = K, M = Nb, Q = Se) are isomorphous and their structures feature a 3D network with 1D 4- and 6-MRs tunnels along the a-axis which is composed of 2D layers of corner-sharing MO(6) octahedra bridged by QO(3) groups. The alkali metal ions are located at the above 1D tunnels of 6-MRs. The structure of Cs(3)Nb(9)O(18)(TeO(3))(2)(TeO(4))(2) features a thick Nb-Te-O layer built of corner-sharing NbO(6) octahedra, TeO(3) and TeO(4) groups. The 2D layer of the NbO(6) octahedra with 1D tunnels of 6-MRs along the c-axis are formed by 1D chains of NbO(6) chains along the c-axis and linear Nb(4)O(21) tetramers by corner-sharing. The TeO(3) and TeO(4) groups are grafted on both sides of the niobium-oxide layer via Nb-O-Te or/and Te-O-Te bridges. The caesium(i) ions are located at the above 1D tunnels of 6-MRs. TGA, UV-vis and infrared spectral measurements as well as electronic structure calculations have also been performed.  相似文献   

15.
Contributions to the investigation of inorganic non-stoichiometric compounds. XXXV. Reduction of block structures by heating with the electron beam -- in situ investigation of a topotactic reaction in the system Nb2O5/WO3 In quenched samples with the starting composition Nb2O5: WO3 ≈? 1:1 we observed by using high resolution transmission electron microscopy (HRTEM) areas with large blocks of [5 × n] M–O octahedra (n = 6, 7, 8, 9; M = Nb, W). Upon heating with the electron beam a structural change occurs as an in-situ reaction. The original [5 × n] blocks are splitting up mostly in two [5 × 1/2n] blocks (n even) or when n is odd into one block with [5 × 1/2(n + 1)] and one with [5 × 1/2(n--1)] M–O octahedra. The splitting up of blocks forces some corner sharing octahedra to become edge sharing octahedra. This change of connections constitutes a partial reduction of the sample.  相似文献   

16.
Contributions to the Investigation of Inorganic Non-stoichiometric Compounds. XXII. New Metastable Block Structures in the System Nb2O5/WO3, Electron Optical Investigation We succeeded in considerably expanding the region of existence of block structures. By substituting W for Nb, while the ratio O/∑M (M ? Nb, W) is kept constant, and starting from the known phases Nb2O5: WO3 = 6:1, 7:3, 8:5 and 9:8 one obtains series of solid solutions whose metastable products of oxidation have block structures too. In contrast to the solid solutions which have the structures of the starting phases i. e. with socalled blocks of [3 × 4], [4 × 4], [4 × 5] and [5 × 5] M? O-octahedra, the products of the oxidation have structures in which some edge sharing octahedra changed their connections to become octahedra sharing corners thus opening up the possibility for the formation of blocks with twice the number of octahedra as before. Rows of these large blocks with e. g. [4 × 6] or [4 × 8] octahedra alternate nonperiodically with rows of smaller blocks of the initial size. Details of these heavily disordered structures could only be discerned with the help of high resolution electron microscopy.  相似文献   

17.
A new six-layer perovskite-related structure Ba 6Na 2Nb 2M 2O 17 (M = P, V), which consists of cubic (c) BaO 3 layers and oxygen-deficient pseudocubic (c') BaO 2 layers stacked in the sequence c'ccccc, is presented. In Ba 6Na 2Nb 2M 2O 17, two-dimensional slabs of the well-known 2:1 octahedral cation-ordered perovskite motif are isolated between layers of tetrahedral units formed by anion vacancy ordering: two consecutive NbO 6 octahedral layers are sandwiched by two single NaO 6 octahedral layers, which, in turn, connect with two isolated MO 4 tetrahedral layers. Both oxides are derived from the 2:1 ordered perovskite structure (e.g., Ba 3ZnTa 2O 9) by ordered removal of O atoms in every sixth BaO 3 layer. Both materials exhibit a relative permittivity of approximately 20-23, Q x f 0 values of approximately 7800-10600 GHz, and negative temperature coefficients of the resonant frequency of approximately -23 to -7 ppm/ degrees C.  相似文献   

18.
The electrochemical and spectroelectrochemical properties of niobium(V) and the Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) cluster in sulfuric acid and methanesulfonic acid were investigated using cyclic voltammetry, constant potential electrolysis, and spectroelectrochemistry. These chemical systems were suitable to probe the formation of "Nb(3)O(2)" core trinuclear clusters. In 9 M H(2)SO(4) the cluster Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) exhibited a reversible 1-electron reduction peak at E(pc) = -1.30 V vs Hg/Hg(2)SO(4) electrode, as well as a 4-electron irreversible oxidation peak at E(pa) = -0.45 V. Controlled potential reduction at E = -1.40 V produced the green Nb(3.33+) cluster anion Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(6-). In 12 M H(2)SO(4) Nb(V) displayed two reduction peaks at E(pc) = -1.15 V and E(pc) = -1.30 V. It was determined that the first process involves a quasi-reversible 2-electron reduction. After reduction of Nb(V) to Nb(III) the following chemical step involves formation of [Nb(III)](2) dimer, which further reacts with Nb(V) to produce the Nb(3)O(2)(SO(4))(6(H(2)O)(3)(5-) cluster (ECC process). The second reduction peak at E(pc) = -1.30 V corresponds to further 2-electron reduction of Nb(III) to Nb(I). The electrogenerated Nb(I) species also chemically reacts with starting material Nb(V) to produce additional [Nb(III)](2). In 5 M H(2)SO(4), the rate of the second chemical step in the ECC process is relatively slower and reduction of Nb(V) at E = -1.45 V/-1.2 V produces a mixture of Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) and [Nb(III)](2) dimer. [Nb(III)](2) can be selectively oxidized by two 2-electron steps at E = -0.65 V to Nb(V). However, if the oxidation is performed at E = -0.86 V, the product is Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-). A double potential pulse electrolysis waveform was developed to direct the reduction of Nb(V) toward selective formation of the Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) cluster. Proper application of dc-voltage pulses alternating between E(1) = -1.45 V and E(2) = -0.86 V yields only the target trinuclear cluster. Analogous double potential pulse electrolysis of Nb(V) in methanesulfonic acid generates the "Nb(3)O(2)" core cluster Nb(3)O(2)(CH(3)SO(3))(6)(H(2)O)(3)(+).  相似文献   

19.
The photocatalytic activities of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) strongly depended on the crystal structure. Overall, photocatalytic water splitting into H2 and O2 proceeded over La3TaO7 and La3NbO7, which have an orthorhombic weberite structure, Y2Ti2O7 and Gd2Ti2O7, which have a cubic pyrochlore structure, and La2Ti2O7, which has a monoclinic perovskite structure. All of these materials are composed of a network of corner-shared octahedral units of metal cations (TaO6, NbO6, or TiO6); materials without such a network were inactive. The octahedral network certainly increased the mobility of electrons and holes, thereby enhancing photocatalytic activity.  相似文献   

20.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号