首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transitions were observed by heat capacity measurements at 74.6 K, 195.2 K, and 303 K. They are a soft mode transition (ΔHt = 30 J mol?1, ΔSt = 0.42 J K?1 mol?1), a first-order commensurate-incommensurate transition (ΔHt = 6.2 J mol?1ΔSt = 0.032 J K?1 mol?1), and a second-order incommensurate-normal transition, respectively.  相似文献   

2.
Heat capacity of Rb2ZnBr4 as a function of γ irradiation dose has been measured within the 85–300 K range by the adiabatic calorimeter technique. It is shown that, as the irradiation dose increases, the heat capacity peak in the vicinity of the incommensurate-commensurate first-order phase transition (PT) decreases, and the transition temperature T c increases. The heat capacity peak in the region of the second-order PT at T 3=112 K does not depend on γ irradiation, both in magnitude and in position, just as the heat capacity throughout the remainder of the temperature range studied. Fiz. Tverd. Tela (St. Petersburg) 40, 1106–1108 (June 1998)  相似文献   

3.
4.
5.
The successive phase transitions of BaZnGeO4 have been studied on meltsolidified samples. A new solid phase (named phase VI) has been found below 186.1 K in samples of large particle size (diameter:D0.1 mm). The higher temperature crystalline phase V can be supercooled easily down to liquid helium temperature. On heating, however, it transforms into phase VI above 95 K in a slow exothermic process. Heat capacities have been measured by adiabatic calorimetry between 14 and 300 K. The enthalpy and entropy of the V–VI phase transition are 187.1 Jmol–1 and 0.971 J K–1 mol–1, respectively. The corresponding data for the IV–V phase transition at 199.8 K are 229.3 J mol–1 and 1.168 JK–1 mol–1. The phase VI does not appear in samples of smaller particle size (D0.1 mm).  相似文献   

6.
7.
8.
The effect of γ irradiation on the temperature hysteresis in dielectric permittivity ɛ and loss tangent tan δ of crystalline Rb2ZnBr4 has been studied in the vicinity of the incommensurate-commensurate phase transition. The ɛ(T) and tan δ(T) curves were found to exhibit anomalies in the form of maxima. Hysteresis was observed in the measured properties, including the transition temperature T c T=T c h T c c ), in both unirradiated and irradiated samples. It is shown that, as the radiation dose increases the extent of the hysteresis ΔT increases, the values of ɛ max and tan δ max at the transition point decrease, and the anomalies wash out. Fiz. Tverd. Tela (St. Petersburg) 40, 1911–1914 (October 1998)  相似文献   

9.
10.
11.
A differential thermal analysis in vacuum and studies of the coefficients of electrical conductivity and thermal conductivity, and of the thermal emf are made in Ag2Te in the neighborhood of the structural phase transition. It is shown that these data can be used to calculate the switching factor L(T), determine the region in which the phases coexist within the transition, and calculate the thermodynamic parameters. Prior to and after the main phase transition, additional displacement transitions are observed. It is found that the phase transition takes place roughly according to the scheme α 385 Kα405 Kβ420 Kβ 440 K. The specific heat C p, changes in entropy ΔS and transition enthalpy ΔH, as well as the minimum phase fluctuation volume V, and the heat Q of the phase transition are determined. It is shown that excesses of Te and Ag have almost no effect on the transition temperatures T 0, but have a substantial effect on the thermodynamic parameters. Fiz. Tverd. Tela (St. Petersburg) 40, 1693–1697 (September 1998)  相似文献   

12.
The kinetics of the ferroelectric phase transition between modulated phases in Rb2ZnCl4 at about 190K has been investigated by time-resolved neutron scattering. Observing the time dependence of satellite spectra, it is found that the structural changes associated with the field-induced transformation proceed on a millisecond time scale. Under the influence of fast cycling strong electric fields unusual non-equilibrium states are obtained which are modulated in space as well as in time and characterised by the presence of internal mechanical strains.  相似文献   

13.
The dynamics of the incommensurate modulation of Rb2ZnBr4 is investigated near the transition to the normal high-temperature phase using first-order quadrupole effects in nuclear magnetic resonance (NMR).87Rb NMR spectra and two-dimensional87Rb NMR exchange spectra are reported. All results can be described consistently in terms of a static modulation in the incommensurate phase without any indication for “floating” or large-scale fluctuations of the modulation wave. The spectra taken about 135 K below Ti in the lower incommensurate phase well above the soliton regime show no indication for the existence of a higher-order commensurate modulation in Rb2ZnBr4.  相似文献   

14.
15.
The microscopic mechanism of the successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions in KNbO3 is discussed quantitatively from the microscopic free energy based upon the mean field approximation where the Nb ions are displaced to create spontaneous deformations. From the calculation of the microscopic free energy, it is shown that the order of the phase transitions and the experimental values of the transition entropy in KNbO3 are well explained by this model.  相似文献   

16.
17.
A thermodynamic theory of ferroelectric and ferroelectric-semiconductor solid solutions is presented with account of the effect of hydrostatic pressure in the cases of sharp as well as diffuse transitions. A number of analytical relations are obtained which allow to estimate the effect of admixture concentration and hydrostatic pressure on dielectric permeability, transition temperature, Curie-Weiss constant, heat capacity, thermal expansion coefficient and other properties of crystals with a ferroelectric subsystem. The theoretical results are compared with the experimental data.  相似文献   

18.
19.
The heat capacity of 1T-TaS2 has been measured over the temperature range including the successive phase transitions (140 K–370 K) by an adiabatic calorimeter. There are three transitions in the measured temperature range, two first-order transitions (at about 226 K (T1) and about 353.5 K (T3)) and one small anomaly at about 283 K (T2) with a broad peak. The transition enthalpies are as follows; ΔH1=52±5 cal·mol-1, ΔH2=7.5±2 cal· mol-1 and ΔH3=122±8cal·mol-1.  相似文献   

20.
The proton second moment (M 2) and spin-lattice relaxation time (T 1) have been measured in (NH4)2ZnBr4 in the range 77–300 K. The room-temperature spectrum shows a structure which disappears around 243 K. The signal is strong and narrow even at 77 K. Proton T 1 shows a maximum at 263 K, caused by spin rotation interaction and decreases with decreasing temperature till 235 K, where it shows a sudden increase. Below 235 K, again it decreases and shows a slope change around 216.5 K (reported Tc ). From 216.5 K, T 1 decreases continuously without exhibiting any minimum down to 77 K. The narrow line at 77 K, and absence of a T 1 minimum down to 77 K indicate the possibility of quantum mechanical tunnelling in this system. Motional parameters such as activation energy and pre-exponential factor have been evaluated for the reorientational motion of the NH+ 4 ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号